
Synthesising Realistic Calcium Imaging Data

of Neuronal Populations using Deep

Generative Models

Bryan Man Yeung Li

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Master of Science by Research

Institute for Adaptive and Neural Computation

School of Informatics

University of Edinburgh

2020

Abstract
Recordings of neuronal activities from behaving animals are essential for the study

of information processing in the brain, and calcium imaging has become a powerful

and popular technique to monitor the activity of large populations of neurons in vivo.

However, for ethical considerations and despite recent technical developments, record-

ings are still constrained to a limited number of trials and animals. This limits the

amount of data available from individual experiments and hinders the development

of analysis techniques and models for a more realistic size of neuronal populations.

The ability to artificially synthesize realistic neuronal calcium signals could greatly

alleviate this problem by scaling up the number of trials. In this work, we (a) explore

the use of Generative Adversarial Networks (GAN) to synthesize realistic fluorescent

calcium indicator signals, and (b) develop a pipeline to pre-process, fit and evaluate

both synthetic calcium signals and their inferred spike trains. We test the models on

artificial data with known ground-truth, as well as real calcium signals recorded from

the primary visual cortex of behaving mice. Together, our results demonstrate that

the GAN framework is capable of synthesizing realistic fluorescent calcium indicator

signals similar to those imaged in the somata of neuronal populations of behaving

animals. Thereby providing the means to augment existing datasets of neuronal activity

for enhanced data exploration and modelling.

i

Acknowledgements
My most sincere gratitude to my supervisor, Dr. Arno Onken, for his tireless guidance

throughout my postgraduate studies. I would like to thank Dr. Nathalie Rochefort and

Theoklitos Amvrosiadis for providing the calcium imaging data as well as providing

meaningful insights from the neuroscience perspective. I would also like to thank Dr.

Nina Kudryashova and Lazaros Mitskopoulos for their enlightenment and ideas.

ii

Declaration
I declare that this thesis was composed by myself, that the work contained herein is my

own except where explicitly stated otherwise in the text, and that this work has not been

submitted for any other degree or professional qualification except as specified.

(Bryan Man Yeung Li)

iii

Table of Contents

1 Introduction 1
1.1 Structure . 2

2 Background 4
2.1 Neuronal activities recordings . 4

2.1.1 Electrophysiological recording 4

2.1.2 Calcium imaging recording 5

2.2 Synthesising neuronal activities . 5

2.2.1 Maximum entropy method 5

2.2.2 Dichotomized Gaussian method 6

2.2.3 Deep generative model method 7

2.3 Generative Adversarial Networks . 8

3 Methods 10
3.1 CalciumGAN architecture . 10

3.1.1 Generator . 10

3.1.2 Discriminator . 11

3.2 CalciumGAN pipeline . 12

3.2.1 Spatial-temporal convolution 13

3.2.2 Frequency-domain representation 14

4 Results 17
4.1 CalciumGAN model training . 17

4.2 Dichotomized Gaussian data . 18

4.2.1 Synthetic data mimicking dichotomized Gaussian data 19

4.3 Two-photon calcium imaging recorded data 22

4.3.1 Synthetic data mimicking recorded data 23

iv

4.3.2 Phase Shuffle . 24

4.3.3 Spatio-temporal convolution 25

4.3.4 Frequency-domain data . 26

4.3.5 Untrained mice data . 27

5 Discussion 33
5.1 Limitations . 34

5.2 Future Work . 34

A Appendix 36
A.1 CalciumGAN without Phase Shuffle 36

A.2 CalciumGAN-2D . 40

A.3 CalciumGAN-2D FFT . 46

A.4 Untrained mice data . 50

Bibliography 52

v

Chapter 1

Introduction

Recordings of neuronal activities from behaving animals are essential for the study

of information processing in the brain. With the advancement of neural recording

techniques, such as electrophysiological recordings and calcium imaging, it has become

increasingly easier to obtain high-quality neuronal activity data in vivo. However, due to

ethical considerations, the acquired datasets are often limited by the number of trials or

the duration of each trial on a live animal. This poses a problem for assessing analysis

techniques that take higher-order correlations into account [6, 51, 53, 54]. Even for

linear decoders, the number of trials can be more important for determining coding

accuracy than the number of neurons [56].

Generative models of neuronal activity hold the promise of alleviating the above problem

by enabling the synthesis of an unlimited number of realistic samples for assessing

advanced analysis methods. Popular modelling approaches including the maximum

entropy framework [17, 37, 44, 52] and the latent variable model [30, 31] have shown

ample success in modelling spiking activities, though oftentimes these model require

a strong assumption of the data and cannot generalize across different cortical areas.

To this end, deep generative models could be a good candidate for modelling neuronal

activities due to their ability to self-identify and self-learn features from the dataset

[27].

Recently, the use of deep generative models, such as Variational Autoencoder (VAE)

and Generative Adversarial Networks (GAN), on neuronal population spike train data

have become increasingly popular. Latent Factor Analysis via Dynamical Systems

(LFADS, [44]) uses the VAE framework to learn the population dynamics in latent

1

Chapter 1. Introduction 2

representation and extract "denoised" single-trial firing rates from neural spiking data.

Spike-GAN [36] demonstrated that GAN can model binary spike trains of a small

number of neurons and can reproduce the low-level statistics of neurons recorded from

salamander retina. Ramesh et al. [47] extended the work by training a conditional

GAN [35] to generate multivariate binary spike trains.

All of the aforementioned generative models operate on population spike trains. Spike

trains are discrete in nature meaning that they cannot be subject to any continuous

increment or decrement. Hence it remains a difficult task to optimize deep generative

models for discrete data with back-propagation [7], which is key for training deep

neural networks. Calcium imaging recordings, on the other hand, access changes in

intracellular calcium concentration as a proxy for neuronal spiking activity, hence

its data is continuous. The continuous nature of calcium fluorescence signals makes

optimization via back-propagation a much more straightforward task as compared to

spike-train data. Thus, calcium imaging datasets are more attractive candidates for

training generative models.

In this work, we explore the feasibility of using the GAN framework to synthesize

calcium imaging data. We detailed CalciumGAN, as a method to scale-up or augment

the amount of neuronal population activity data. Work in this direction could open

endless amount of possibility such as style transfer [26] and representation learning [9].

We validate the method on artificial data with known ground-truth and we synthesize

data mimicking real two-photon calcium (Ca2+) imaging data as recorded from the

primary visual cortex of a behaving mouse [23, 42].

1.1 Structure

Chapter 2 introduces the necessary background information for this work. Section 2.1

provides an overview of various neuronal activities recording techniques. Section 2.2

discusses popular statistical models for synthesising spiking activities, including the

maximum entropy framework, latent variable models and deep generative models.

Section 2.3 briefly describe the various formulation of GAN, their common problems

as well as possible solutions.

Next, the methods we proposed in this works are presented in Chapter 3. Section 3.1

describes in detail about the exact model architecture we used and Section 3.2 layout

the complete pipeline of the model, from pre-processing to spike analysis. Section 3.2.1

Chapter 1. Introduction 3

and Section 3.2.2 discuss the possible variants of our CalciumGAN model that aim to

address various aspect of the data.

In the result Chapter 4, we first specified the programming technical detail and model

training parameters of CalciumGAN in Section 4.1. In order to produce an accurate

measure of the statistics of the generated data, we first fitted the model with artificial

data with known ground-truth statistics in Section 4.2. Then in Section 4.3, we trained

CalciumGAN with real recorded data from a behaving mouse and compared their

mean firing rate, pairwise correlation and van-Rossum distance. We also analysed

the different variation of CalciumGAN in this section, including modeling the spatio-

temporal dimensions of the data with 2-dimensional convolution kernels as well as

training the model in frequency-domain.

Finally, Chapter 5 provides a summary of this work, including its contribution to the deep

learning and computational neuroscience community. We also discuss the limitations

of our approach to the problem and proposed various future research directions that

consolidate GAN and neural coding.

Chapter 2

Background

2.1 Neuronal activities recordings

One of the main methods for neurons to propagate signals in the brain and nerve system

is by generating electrochemical pulses, which are known as action potentials or spikes

[10]. Information is represented and transmitted via sequences of spikes in a specific

order and temporal patterns. In order to understand the neural information processing

process, it is essential to be able to record spiking activities accurately, and in a large

scale setting. Modern recording techniques enable us to simultaneously record neuronal

activities from dozens of neurons to tens of thousands of neurons, each method having

its own advantages and weaknesses. In this section, we briefly discuss the two popular

in vivo recording techniques, electrophysiological recording and calcium imaging.

2.1.1 Electrophysiological recording

Electrophysiological recording, which measures the rate of change in voltage by micro-

electrodes inserted in the cell membrane of a neuron, is considered the most accurate

method to measure spike activities [10]. Though this method is not without flaws. For

instance, a single microelectrode can only detect activity from a few neurons in close

proximity, and extensive pre-processing is required to infer single-unit activity from a

multi-unit signal. Disentangling circuit computations in neuronal populations of a large

scale remains a difficult task, hence resulting in recordings with low spatial resolution

but high temporal resolution [48].

4

Chapter 2. Background 5

2.1.2 Calcium imaging recording

Calcium imaging recording is another imaging technique that has become a powerful

and popular method to monitor large neuron populations. When the membrane potential

reaches a certain threshold voltage, numerous ions are released from the voltage-gated

ion channels to depolarize the cell, including calcium (Ca2+) ions, and causes an

action potential [4, 50]. Calcium imaging takes advantage of calcium influx during

the depolarization process, and monitor the green fluorescent protein indicator, as a

proxy for neuronal spiking activity [55]. This recording method can monitor a large

number of neurons simultaneously, and unlike electrophysiological recording, it can

also track the activity of the same neuron populations over time [45]. However, since

calcium imaging is an indirect read-out of the cellular activity, and the transformation

from calcium fluorescence signal to spiking activity is still an active area of research,

inferring spikes from calcium signals accurately remains a challenging task [60].

2.2 Synthesising neuronal activities

The ability to synthesize realistic spike activities can greatly improve our understanding

of how neurons encode and decode information in our brain. Many studies have

been done on mimicking the neuronal functional architecture using different statistical

models, mostly synthesizing neuronal activities in the form of spike trains [17, 30, 31,

37, 44, 52]. The following sections outline some of the popular statistical methods for

modelling neuronal activities, as well as the existing deep generative models that use

the GAN framework to synthesis spike trains.

2.2.1 Maximum entropy method

The maximum entropy framework has seen considerable success in capturing the low-

level statistics of spiking activities [17, 44, 52]. One key advantage of the maximum

entropy method is that it allows us to progressively add layers of restriction to the

otherwise unstructured model. Schneidman et al. [52] compares the Ising model to the

spiking patterns of neural networks to capture the low-level statistics of spiking patterns.

By computing the firing rate of N neurons and the correlation between each neuron

pairs, the Ising model formulates the maximum entropy probability distribution PMaxEnt

Chapter 2. Background 6

and energy function H as:

PMaxEnt(s) =
1

Z(s)
exp(−H (s)) (2.1)

H (s) =
N

∑
i=1

hisi +
1
2

N

∑
i, j=1

Ji jsis j (2.2)

where si = 1 denotes a spike, Z(s) = ∑s exp(−H (s)) is a normalization factor, and hi

and Ji j are the Lagrange multipliers, needed to be tuned to match the experimental data.

This pairwise model has shown excellent result in capturing the low-order statistics of

up to N = 40 retinal ganglion cells.

In order to reduce the computation cost of the maximum entropy method, Ganmor et al.

[17] explored the possibility to reduce the number of connections and parameters in the

network by model pruning. The authors observed that while the majority of the neuron

pairs have weak correlation, some groups of neurons can be strongly correlated. They

constructed a "motifs" network, consisting of a triplet of cells ("unfustrated" triangles

in the Ising model) that are highly correlated or have adjacent receptive fields, and able

to produce a very good approximation to the full pairwise model with a relatively small

number of connections. While the pairwise models perform well with smaller networks

(N ≤ 40), it cannot model synchronous spikes in networks with larger populations.

To address the said issue, Tkačik et al. [58] proposed the K-pairwise model to better

formulate the spatial correlation in the data. They introduced an additional constraint

into the energy function where the probability PN(K) of K out of N neurons spike at

time-bin ∆ t is also taken into account:

H (s) =
N

∑
i=1

hisi +
1
2

N

∑
i, j=1

Ji jsis j +V
N

∑
i=1

si, (2.3)

where V is an effective potential, tuned to match the observed distribution PN(K). The

additional K-spike constraint allows the Ising model to produce excellent results for

larger populations of neurons (N ≈ 100) while preserving the low-order statistics of the

observed data.

2.2.2 Dichotomized Gaussian method

Despite the success of modelling the low-level statistics of binary neural population

patterns, the Ising model cannot scale well in high dimensions as the number of possible

states grows exponentially [57]. Macke et al. [31] proposed to model the binary spike

Chapter 2. Background 7

trains with the dichotomized Gaussian (DG) distribution instead, where the mean and

covariance of the distribution are be specified. The model uses a multivariate normal

distribution to generate latent continuous random variables which are then thresholded

to generate binary variables representing spike trains.

2.2.3 Deep generative model method

The above-mentioned statistical models have shown great success in modelling cor-

related binary spike trains, though, many of these methods require optimizations or

restrictions for specific cortical areas, and often cannot generalize. With the recent

popularity of GAN being used across a vast variety of domains and data-types, including

images [26], text [18], audio [24] and many more. The GAN framework could be an

excellent alternative in modelling neuronal activities. (We discuss further about GAN

and its formulation in Section 2.3)

Spike-GAN [36] demonstrated that GAN can model neural spikes that accurately

match the statistics of real recorded spiking behaviour from a small number of neurons.

Moreover, the discriminator in Spike-GAN is able to learn to detect which population

activity pattern is the relevant feature, and this can provide insights into how a population

of neurons encodes information. Ramesh et al. [47] trained a conditional GAN [35],

conditioned on the stimulus, to generate multivariate binary spike trains. They fitted the

generative model with recorded data in the V1 area of the macaque visual cortex, and

GAN generated spike trains were able to capture the firing rate and pairwise correlation

statistics better than the dichotomized Gaussian model and a deep supervised model.

Nevertheless, one major hurdle of applying deep learning methods on spike trains is that

spike trains are discrete in nature, meaning that they cannot be subject to any continuous

increment or decrement. For instance, Ramesh et al. [47] used REINFORCE gradient

estimate [61] to train the generator in order to perform back-propagation on discrete

data. Still, gradient estimation with the REINFORCE approach yields large variance,

which is known to be challenging for optimization [32, 63]. It remains a difficult task

to optimize deep generative models for discrete data with back-propagation, which is

key for training deep neural networks. Hence, we are interested in the possibility of

synthesizing the continuous fluorescent calcium signals with GAN, in addition to the

advantages that calcium imaging brings.

Chapter 2. Background 8

2.3 Generative Adversarial Networks

A typical GAN model consists of a generator G, which attempts to generate convincing

samples x̂ from the latent space PZ , whereas the discriminator D learns to distinguish

generated sample distributions Px̂ from the real data distribution PX . In the original

GANs framework introduced by Goodfellow et al. [20], the discriminator functions

like a logistic classifier, trained to identify real samples from generated samples. The

discriminator has the loss function:

LD = E
x∼PX

[logD(x)]− E
z∼PZ

[log(1−D(G(z)))] (2.4)

Whereas the generator’s objective is simply maximizing the loss of the discriminator,

hence the two networks are trained jointly to perform this minimax game:

argmax
G

min
D

LD (2.5)

However, this zero-sum formulation and the objective of minimizing the Jensen-

Shannon divergence between the original data distribution and generated data dis-

tribution made GAN models notoriously difficult to train. For instance, GAN is prone to

mode collapse where the generator focuses on generating a small subset of the dataset,

instead of learning the true data distribution [8]. Another major challenge of GAN is

when the discriminator is doing too well such that the gradient signals for the generator

vanish, an issue known as vanishing gradients [19, 43].

Wasserstein GAN (WGAN), introduced in Arjovsky et al. [2], propose instead to

minimize the continuous and smoother Earth-Mover distance, also known as the 1st

Wasserstein distance. The value function in WGAN uses the Kantorovich-Rubinstein

duality formulation [59] to measure the Wasserstein distance between the real and

generated data distribution:

W (PX ,PX̂ = E
x∼PX

[F(x)]− E
x̂∼PX̂

[F(x̂)] (2.6)

where F is a set of 1-Lipschitz functions. In WGAN, the discriminator is called the

critic due to the fact that the discriminator is not behaving as a classifier, but a value

function instead. In order to enforce the 1-Lipschitz condition on the critic, the weights

of the critic are clipped within a predefined range [−c,c] where c is a hyper-parameter.

In the original GAN formulation, the loss function reflects how well the discriminator is

performing, regardless of the quality of the generated samples. With WGAN, the value

function appears to correlate with the generated sample quality. The weight constraint

Chapter 2. Background 9

method to enforce the Lipschitz condition is simple to implement though it can also be

problematic: Gulrajani et al. [21] have shown that WGAN is extremely sensitive to the

hyper-parameter c. Moreover, weight clipping also greatly limits the network capacity

and its capability to model complex functions.

Gulrajani et al. [21] suggest an alternative method, WGAN with Gradient Penalty

(WGAN-GP), to enforce the Lipschitz condition more effectively. WGAN-GP takes

advantage of the fact that a differential function is 1-Lipschitz if and only if the norm of

the gradient is 1, hence they propose an objective function that penalizes the critic if its

gradient norm is not 1:

LD = E
z∼PZ

[D(G(z))]− E
x∼PX

[D(x)]+λ E
x̃∼PX̃

[(‖ ∇x̃D(x̃) ‖2 −1)2] (2.7)

where λ denotes the gradient penalty coefficient, x̃ = εx+(1− ε)x̂ are samples taken

between the real and generated data distribution. The gradient penalty formulation

increases the computation complexity, though it significantly improves the network

training stability and convergence. In this work, we attempt to model calcium imaging

data using the WGAN-GP formulation (Equation 2.7) without the need of specific

constraint or information of the neuronal activities into the model objective function.

Chapter 3

Methods

3.1 CalciumGAN architecture

A described in Section 2.3, a typical GAN model consists of two networks, a generator

and a discriminator. A sample noise is drawn from a Gaussian distribution z ∼ N
with a given mean and standard deviation. The generator receives the input z and

interpolates it, usually via layers of fully-connected or transposed convolution layers,

and generate output x̂ which has the same dimension as real data x. The discriminator

then receives the generated output and real data and learns to distinguish between

the two. One great advantage of the GAN framework is that the architectures of the

generator and discriminator are modular while the training procedure remains the same,

hence can be easily adapted to a different type of data. In this work, we adapted

the WaveGAN architecture [11], which has shown promising results in audio signal

generation. The following sections describe the detail of our GAN model, which we

named CalciumGAN, Table 3.1 shows the exact architecture.

3.1.1 Generator

Similar to the generator of WaveGAN, we used 1-dimensional transposed convolution

layers (sometimes referred to as deconvolution) to up-sample the input noise. Each

transposed convolution layer (see Section 3.2.1 for additional detail) was followed

by an activation layer. In addition, we added Layer Normalization [25] in between

each convolution and activation, in order to stabilize training as well as to make the

operation compatible with the WGAN-GP framework. To improve the model learning

10

Chapter 3. Methods 11

performance and stability, the calcium signals were scaled to the range between 0

and 1 by normalizing with the maximum value of the calcium signal in the data.

Correspondingly, we chose sigmoid activation in the output layer of the generator and

then re-scaled the signals to their original range before inferring their spike trains.

3.1.2 Discriminator

'

÷:: i:
Figure 3.1: Illustration of the 1-dimensional Phase Shuffle mechanism. Each box denotes

an activated unit after a convolution layer, and the units are mirrored along the grey dash

lines. The large box in light green represents the output of the Phase Shuffle layer with

n =−2.

The architecture of the discriminator in our model is largely a mirror of the generator,

with the exception of the removal of Layer Normalization and instead of up-sampling

the input with transposed convolution, we used a simple convolution layer instead. Sam-

ples generated using transposed convolution often exhibit the "checkerboard" artifacts

described by Odena et al. [39], where the output exhibits repeated patterns (usually very

subtle to the eye) due to a filter being applied unevenly to the receptive field. In the con-

text of signal generation, the discrimination could exploit the periodic artifacts pattern

and learn a naive policy to reject generated samples. Donahue et al. [11] proposed the

Chapter 3. Methods 12

Phase Shuffle mechanism in the discriminator to address the aforementioned issue. The

Phase Shuffle layer randomly shifts the activated units after each convolution layer by

[−n,n], in order to distort the periodic pattern. Hence, the resulting samples constitute

a more challenging task for the discriminator. Figure 3.1 shows a simple illustration

of the Phase Shuffle operation. In our network, we incorporated the Phase Shuffle

operation, as well as using a kernel size that is divisible by the stride size, as suggested

in Odena et al. [39]. This led to a noticeable improvement in the generated samples. We

apply the Phase Shuffle operation after each convolution layer. We use the WGAN-GP

formulation of the loss function without the need of incorporating any information of

the neural activities into the objective function as specified in Equation 2.7.

3.2 CalciumGAN pipeline

We devised a consistent model analysis pipeline to evaluate the quality of samples

generated by the model, as well as its ability to generalize, in the context of neu-

ronal population spiking activities. The complete model analysis pipeline is shown in

Figure 3.2.

In order to train and evaluate our GAN model, we have to first preprocess the calcium

signals so that they have a standardized format. For calcium imaging data of N neurons

with a recorded length of L, we would receive a raw data shape of (L,N). We then

used a slicing window of size T to segment the data along the time dimension into M

segments, resulting in a matrix with shape (M,T,N). To improve the network training

performance, we scale the raw calcium signals x to the range [0,1] before we train our

generative model:

xmin,xmax = min(x),max(x) (3.1)

x[0,1] =
x− xmin

xmax− xmin
(3.2)

We use a[0,1] to denote data a that has a range of [0,1].

Since we evaluate our model performance in terms of spike activities, we needed a

deconvolution algorithm to infer the spike trains from calcium signals. In this work, we

used the Online Active Set method to Infer Spikes (OASIS) deconvolution algorithm

[15] for its fast online deconvolution performance. Prior to inferring the spiking

activities from the generated signals x̂[0,1], we first have to scale the signal back to the

Chapter 3. Methods 13

same range as the raw calcium signals:

x̂ = x̂[0,1](xmax− xmin)+ xmax (3.3)

We inferred the spike trains from the generated signals as well as the real recorded data

with OASIS in order to ensure the possible biases of the deconvolution algorithm are

the same for both data. Now that we have obtained spiking activities from both the

real recorded data and generated samples, we then measure spike train similarities and

statistics using the Electrophysiology Analysis Toolkit (Elephant) [38]. We evaluate the

performance of our model with the following spike train statistics and similarities: (a)

mean firing rate for evaluating single neuron statistics; (b) pairwise Pearson correlation

coefficient for evaluating pairwise statistics; (c) pairwise van-Rossum [49] distance

for evaluating general spike train similarity. Importantly, we evaluate these quantities

across the whole population for each neuron or neuron pair and each short time interval

(100 ms) and compare the resulting distributions over these quantities obtained from

training data as well as generated data. We, therefore, validate the whole spatial-

temporal first and second-order statistics as well as general spike train similarities.

3.2.1 Spatial-temporal convolution

0000000000000000000000000*810
0000000000000000

0000000660000000

888888880
00001.0000
00000000

DODO:O DO D
(a)

0000000000000000000000000*810
0000000000000000

0000000660000000

888888880
00001.0000
00000000

DODO:O DO D

(b)

Figure 3.3: Illustrations of 1-dimensional and 2-dimensional kernels. (a) illustrates 1-

dimension convolution with kernel size of 2; (b) illustrates 2-dimensional convolution with

a 2×2 kernel, similar to the one in CalciumGAN-2D. In (b) each datum has 2 channels,

as of the case for CalciumGAN-2D FFT.

1-dimensional transposed convolution layers were used in the generator of WaveGAN,

where the filter interpolates on the temporal dimension. As mentioned in Section 2.2,

Chapter 3. Methods 14

many works have shown that modelling both the spatial and temporal dimensions

of spiking activities see significant improvement in the quality of the generated data

[46, 57, 58]. Hence, in addition to the 1-dimensional transposed convolution along

the temporal domain (and 1-dimensional convolution in the discriminator), we also

experiment with 2-dimensional transposed convolution where the filters would apply to

both spatial and temporal dimensions (denoted as CalciumGAN-2D). Figure 3.3 shows

a simple illustration of 1-dimensional and 2-dimensional kernel. We simply add an

additional dimension to our data, from shape (M,T,N) to (M,T,N,1), similar to an

image with a single channel. We also adapted the Phase Shuffle layer to work with

3-dimensional input, by randomly shifting the activated units by [−m,m] and [−n,n] in

the spatial and temporal domain respectively. The architecture of CalciumGAN-2D is

shown in Table A.2.

3.2.2 Frequency-domain representation

There is an increasing number of works done in audio synthesis where the deep neural

network operates on raw waveform signal directly [29, 41]. Nevertheless, the use of

spectrogram representation is still a common practice in many works [12, 13, 22]. We

are interested in whether the frequency representation of the calcium signals, instead of

in the time-domain, would allow the network to learn the additional structure from the

data. To do so, we apply Fast Fourier Transform (FFT) to convert the segmented calcium

signals in waveform into their frequency-domain representation. Since FFT provides a

complex number, we separate the real and imaginary parts into two channels, yielding

samples with shape (M,T,N,2), hence we also use the CalciumGAN-2D variant here.

After converting to frequency-domain, we scale the signals range to 0 to 1 and follow

the same procedure as stated above. In the post-processing step, after rescaling the

generated data to its original range, we convert the sample x̂ to complex number by

merging the real and imaginary part x̂ = x̂[. . . ,0]+ x̂[. . . ,1]∗1 j, then apply inverse Fast

Fourier Transform (iFFT) to convert the sample to its time-domain representation and

perform spike analysis. The orange boxes in Figure 3.2 show the additional steps we

took in the CalciumGAN-2D FFT variant.

Chapter 3. Methods 15

Layer Output shape

Input (bs, 32)

Dense (bs, 2048)

LeakyRelu (bs, 2048)

Reshape (bs, 64, 32)

Conv1DTransposed (bs, 128, 320)

LayerNorm (bs, 128, 320)

LeakyRelu (bs, 128, 320)

Conv1DTransposed (bs, 256, 256)

LayerNorm (bs, 256, 256)

LeakyRelu (bs, 256, 256)

Conv1DTransposed (bs, 512, 192)

LayerNorm (bs, 512, 192)

LeakyRelu (bs, 512, 192)

Conv1DTransposed (bs, 1024, 128)

LayerNorm (bs, 1024, 128)

LeakyRelu (bs, 1024, 128)

Conv1DTransposed (bs, 2048, 102)

LayerNorm (bs, 2048, 102)

LeakyRelu (bs, 2048, 102)

Dense (bs, 2048, 102)

Sigmoid (bs, 2048, 102)

(a) Generator architecture

Layer Output shape

Input (bs, 2048, 102)

Conv1D (bs, 1024, 64)

LeakyRelu (bs, 1024, 64)

PhaseShuffle (bs, 1024, 64)

Conv1D (bs, 512, 128)

LeakyRelu (bs, 512, 128)

PhaseShuffle (bs, 512, 128)

Conv1D (bs, 256, 192)

LeakyRelu (bs, 256, 192)

PhaseShuffle (bs, 256, 192)

Conv1D (bs, 128, 256)

LeakyRelu (bs, 128, 256)

PhaseShuffle (bs, 128, 256)

Conv1D (bs, 64, 320)

LeakyRelu (bs, 64, 320)

Flatten (bs, 20480)

Dense (bs, 1)

(b) Discriminator architecture

Table 3.1: The generator (a) and discriminator (b) architecture of CalciumGAN. The

generator consists of 4,375,740 parameters, and the discriminator consists of 4,110,273

parameters. Note bs denotes batch size.

Chapter 3. Methods 16

CalciumGAN

synthetic signals

noise z

pre-processing

FFT

reshape

scale

input 𝑥[",$]

post-processing

rescale

reshape

iFFT

recorded signals

synthetic spikesrecorded spikes

segmentation

OASIS

OASIS

spike analysis

Figure 3.2: Pipeline diagram of a CalciumGAN analysis. White boxes illustrate data

in different processing stages. Blue boxes illustrate operations and analysis steps.

Orange boxes represent optional operations, see Section 3.2.1 and Section 3.2.2 for the

CalciumGAN-2D specification and frequency-domain representation.

Chapter 4

Results

In this chapter, we present the training procedure and evaluate the performance of our

model. We first fit CalciumGAN with synthetic data with known ground-truth statistics

and show that the generated data by our model can closely resemble the underlying data

distribution. We then train CalciumGAN and its variants with calcium imaging data

recorded from the primary visual cortex of behaving mice and compare the statistics of

the recorded and generated data. The software codebase for this project is available at

github.com/bryanlimy/calciumgan.

4.1 CalciumGAN model training

We trained both the generator and discriminator with the WGAN-GP framework, with

5 discriminator update steps for each generator update step. We then used Adam

optimizer [28] to optimize both networks. The vast majority of the code was written in

Python, where the deep neural networks were implemented in TensorFlow [1] because

of its vast community support and hardware optimization. In order to find the optimal

hyper-parameters, we performed a Random Search [3] using the Keras Tuner API [40].

The exact hyper-parameters being used in this work can be found in Table 4.1. To speed

up the training process, we incorporated Mixed Precision training [34] in our codebase.

The majority of the computations was performed in float16 representation and we only

kept the loss calculation in float32 to avoid numeric underflow or overflow, essentially

allowing us to fit twice as many data to the computing hardware such as GPUs and

TPUs. As a result, we are able to train our model with a batch size of bs = 128 on a

single NVIDIA RTX 2080 TI GPU.

17

https://github.com/bryanlimy/calciumgan

Chapter 4. Results 18

Hyper-parameters Value

Filters 64

Kernel size 24

Stride 2

Noise dimension 32

Critic updates 5

Gradient penalty (λ) 10

Batch size (bs) 128

Epochs 400

Learning rate 0.0001

Phase shuffle (m) 10

Table 4.1: Hyperparamters of CalciumGAN after Random Search.

4.2 Dichotomized Gaussian data

In order to verify that CalciumGAN is able to learn the underlying distribution and

statistics of the training data, we generated our own ground-truth dataset with pre-

defined mean and covariance using the DG model discussed in Section 2.2.2. To generate

data from the DG model, we used the sample means and sample covariances obtained

from real recorded data (details of the recorded data are described in Section 4.3). In

alignment with the recorded data, we generated correlated spike trains for N = 102

neurons with a duration of L = 899 seconds and at 24 Hz, hence a matrix with shape

(21576,102). In order to obtain calcium-like signals c from spike trains s with length

T , we convolved the generated spike trains with a calcium response kernel and added

noise, as described in Friedrich et al. [15]:

st = gst−1 + st 1≤ t ≤ T (4.1)

c = b+ s+σu u∼N (0,1) (4.2)

where g denotes a finite impulse response filter, b is the baseline value of the signal and

σ is the noise standard deviation. In our work, we set g = 0.95, σ = 0.3 and b = 0. We

scale the signals range from 0 to 1. The data is then segmented using a sliding window

along the time dimension with a stride of 2 and a window size of T = 2048 (around 85

seconds in experiment time). We apply the segmentation procedure to both the signal

and spike data, hence resulting in two matrices with shape (9754,2048,102). Examples

Chapter 4. Results 19

of signals and spikes generated from the DG model can be found in Figure 4.2a.

4.2.1 Synthetic data mimicking dichotomized Gaussian data

(a)

(b) (c)

Figure 4.1: The (a) generator loss and the (b) discriminator loss gradient penalty of

CalciumGAN trained on the DG data. The blue line and orange line indicate the training

and validation performance respectively.

We first fit CalciumGAN to the artificial dataset sampled from the DG distribution

until the model converges. We trained the model for 400 epochs with 8,754 samples

and held out 1,000 samples for evaluation. Figure 4.1 shows the loss of the generator

and discriminator as well as the gradient penalty of the GAN model, the training

stabilized within 200 epochs in most cases. Since we defined the model from which we

generated the training dataset, we can validate the statistics of the dataset generated by

CalciumGAN on the known ground-truth directly. Examples of generated signals and

spikes can be found in Figure 4.2b.

We estimated the mean firing rates and the covariances of data generated by Calcium-

GAN and compared it to the DG ones (Figure 4.3). We plotted the values of 5 samples

Chapter 4. Results 20

for each neuron and neuron-pair and sorted them by their mean in ascending order. Our

model is able to reliably capture the firing rate very well, with a root mean square error

of 0.0997 Hz. The variation of the firing rate across samples matched with those of the

ground-truth data. The majority of the neuron pairs have low correlation which was

also found in the generated data. The neuron pairs that have highly positive and highly

negative covariance also have a greater variation across samples.

0 8 16 25 33 41 50 58 66 75 83
Time (s)

1

0

1

Neuron #075
recorded signal
inferred spike

0 8 16 25 33 41 50 58 66 75 83
Time (s)

0

2
Neuron #027

0 8 16 25 33 41 50 58 66 75 83
Time (s)

0

5
Neuron #006

0 8 16 25 33 41 50 58 66 75 83
Time (s)

0

2
Neuron #002

(a)

0 8 16 25 33 41 50 58 66 75 83
Time (s)

1

0

1

Neuron #075
synthetic signal
inferred spike

0 8 16 25 33 41 50 58 66 75 83
Time (s)

0

2
Neuron #027

0 8 16 25 33 41 50 58 66 75 83
Time (s)

0

5
Neuron #006

0 8 16 25 33 41 50 58 66 75 83
Time (s)

0

2
Neuron #002

(b)

Figure 4.2: Calcium signals and inferred spike trains (in gray) of randomly selected

neurons. (a) shows the DG data (in blue) and (b) shows synthetic data (in orange)

generated by CalciumGAN trained on the DG data. Notice that the artificial signal data

transformed from DG spike data do not have the peak and decay characteristics of

typical calcium imaging data.

Chapter 4. Results 21

41 56 2 88 85 68 35 34 86 75 84 83 87 63 32 20 50 78 92 94

Neuron

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Fi
rin

g
ra

te
 (H

z)

DG
CalciumGAN

(a)

33
4

22
05

11
47 95

0
10

71
32

32 80
4

28
00

10
86 29

9
11

13
11

10
45

80
31

63
23

71
26

86 87
4

Neuron Pair

0.1

0.0

0.1

0.2

0.3

0.4

Co
va

ria
nc

e

DG
CalciumGAN

(b)

Figure 4.3: CalciumGAN trained on the DG dataset with known ground-truth. (a) Mean

firing rate of each neuron. (b) Neuron pairwise covariance. Blue dots represent DG data

and orange crosses present generated data. 5 randomly selected samples for each

neuron and neuron-pair were displayed in both graphs, where the order on the x-axis

was sorted by the mean of the firing rate and covariance respectively. In (b), only every

10th pair is displayed, for clarity. Here, we compare both the trend and variation of the

generated data statistics with the DG data.

Chapter 4. Results 22

4.3 Two-photon calcium imaging recorded data

Date Sampling rate Duration Num. trials Avg. duration Avg. firing rate

Day 1 24 894.73s 129 6.94s 58.07Hz

Day 4 24 898.45s 203 4.43s 35.83Hz

Table 4.2: Information about the neuron population of N = 102 recorded from the primary

visual cortex of a behaving mouse on the 1st day and 4th day of the experiment.

After validating our model on data with known ground-truth, we applied CalciumGAN

on real two-photon calcium imaging data recorded in the primary visual cortex of

mice performing a virtual reality task. The data were collected with the same setup as

specified in Pakan et al. [42] and Henschke et al. [23]. Head-fixed mice were placed

on a cylindrical treadmill and navigated a virtual corridor rendered on two monitors

that covered the majority of their visual field. A lick spout was placed in front of the

mice, where a water drop would be made available to the mice as a reward if it licked

at the correct location within the virtual environment. Hence, the mice would learn

to utilize both the visual information and self-motion feedback in order to maximize

the rewards. Neuronal activity was monitored from the same primary visual cortex

populations over multiple consecutive behavioural sessions. Table 4.2 shows the basic

information of the data collected from the mice experiments. In this work, we are

using neuron population data recorded on the 4th day of the experiment, where the mice

were quite familiar with the virtual environment and the given task. In this particular

recording, neurons were labelled with GCamP6f, and N = 102 neurons were recorded

at a sampling rate of 24 Hz, the mouse performed 204 trials in L = 898.2 seconds

(raw data shape (21556,102)). Due to the fact that GAN models require a significant

amount of training data, information about the trial and position of the mice in the

virtual environment were not used in this work.

We applied the OASIS AR1 deconvolution algorithm to infer the spike activities from

the recorded calcium signals and performed the same normalization and segmentation

steps as mentioned in Section 4.2. Both calcium signals and inferred spike trains have

shape (9754,2048,102). Figure 4.4a shows examples of the recorded calcium signals

and inferred spike trains. There are multiple challenges for both the generator and

discriminator to learn from the calcium imaging signals. Since data were segmented

with a sliding window and the information of the trial was not used, some samples

Chapter 4. Results 23

might consist of abnormal signal activity, such as a peak being cropped off. Generated

signals could have the same number of peaks or ranges, though might not preserve the

peak and decay characteristics of calcium imaging data. Real and synthetic activity

from less active neurons might be more difficult for the discriminator to distinguish due

to the absence of prominent spiking characteristics.

4.3.1 Synthetic data mimicking recorded data

We tested CalciumGAN with the data recorded from the primary visual cortex of a

trained mouse. Similar to the DG analysis, we trained the model for 400 epochs, with

8,754 training samples, and 1,000 samples were held out for evaluation. Note that

since we are not taking the trial and position of the mice in the virtual environment into

consideration when training the model, the generated data and the evaluation data do

not have a one-to-one mapping.

We first inspect the generated data and the deconvolved spike trains visually. The cal-

cium signals and inferred spike trains of 6 randomly selected neurons from a randomly

selected sample are shown in Figure 4.4. Both the synthetic raw traces as well as the

inferred spikes visually match the characteristics of the recorded ones.

We then compared the spiking characteristics across the whole population. Figure 4.5

shows the inferred spike trains of the complete 102 neurons population from a randomly

selected sample of the real and the synthetic data, with the distribution histogram plotted

on the x and y axis. The synthetic data mimics the firing patterns across neurons and

across time remarkably well with occasional small deviations in the rates at particular

temporal intervals. Notably, the samples are clearly not identical meaning that the

network did not just replicate the training set data.

In order to examine if CalciumGAN is able to capture the first and second-order

statistics of the recorded data, we measured the mean firing rate, pairwise correlation,

and van-Rossum distance (see Figure 4.6). The randomly selected neurons shown in

Figure 4.6a all have very distinct firing rate distributions, and CalciumGAN is able to

model all of them relatively well, with KL divergence of 0.42, 0.11, 0.09, 0.66, 0.25

and 0.40 with respect to the recorded firing rate over 1000 samples. We show the

pairwise van-Rossum distance of the same neuron between recorded and generated

data across 50 samples in Figure 4.6c as sorted heatmaps. Less active neurons, such

as neuron 75, have a low distance value across samples, mainly due to the scarcity of

Chapter 4. Results 24

firing events. Conversely, a high-frequency neuron, such as neuron 6, exhibits a trend

of lower distance values in the diagonal of the heatmap, implying the existence of a

pair of a recorded and generated sample that is similar. In order to ensure that the data

generated by our model capture the underlying distribution of the training data, we also

compute the KL divergence between the distributions of the above-mentioned metrics

(see Figure 4.7). CalciumGAN was able to model all 3 of the statistics of the recorded

data, with most samples having KL divergence values of less than 1.5. Note that we

measure the pairwise distance of the same neuron across 50 samples in Figure 4.6c,

whereas, in Figure 4.7c, we measure the pairwise van-Rossum distance of each neuron

with respect to other neurons within the same sample.

We also fit the DG model with the recorded data and measured the above-mentioned

statistics of DG generated spike trains as a baseline. Table 4.3 showed the mean KL

divergence of the DG generated data against the recorded data, as well as the statistics

of CalciumGAN and its variations.

Model mean firing rate pairwise correlation van-Rossum distance

CalciumGAN 0.4536 0.0824 0.5839

– without Phase Shuffle 1.0478 0.1148 0.7273

– 2D 0.5351 0.1195 0.5897

– 2D FFT 0.4992 0.1054 0.5797
DG 1.0592 0.3379 1.0287

Table 4.3: The mean KL divergence value in each metrics of different models. The result

with the lowest value is highlighted.

4.3.2 Phase Shuffle

In order to reduce the effect of the "checkerboard" artifact, we adapted the Phase Shuffle

mechanism (see 3.1.2) in the discriminator. In this section, we examine the effectiveness

of Phase Shuffle in terms of the visual quality of the generated traces as well as the effect

it had on the inferred spike trains. A common characteristic of the calcium indicators

when an action potential occurs is a sharp onset followed by a slow decay in the signal

[16]. In Figure 4.8, we can see that such characteristics in the calcium traces were

more prominent when Phase Shuffle was enabled. We believe that such differences in

the generation quality exist mainly because of the repetitive patterns in the transposed

Chapter 4. Results 25

convolution layer [39], since the discriminator can simply distinguish generated samples

from real samples by learning if such patterns exist. As the Phase Shuffle mechanism

shifts the temporal dimension (by 10 units in our experiment) randomly, it forces the

discriminator to learn from other features in the data instead of the "shortcut" provided

by the (undesired) nature of transposed convolution.

(a) (b)

Figure 4.8: Generated traces of Neuron 6 from a randomly selected sample with (a)

PhaseShuffle = 10 and (b) PhaseShuffle = 0. The sharp rise to peak followed by a tail

of decaying signal is less observable in when Phase Shuffle is disabled.

Moreover, not only did Phase Shuffle affect the visual quality of the generated samples,

but it also impacted the spike train statistics. The traces generated without Phase Shuffle

lack the spiking characteristics, which made it more difficult for the deconvolution

algorithm to register a spike in the data, thus increasing the inaccuracy of the inferred

spike trains. When comparing the KL divergence of the spike train statistics, the

samples generated without Phase Shuffle suffer worse results across the 3 statistics (see

Table 4.3), especially with mean firing rate. The mean firing rate, pairwise correlation

and van-Rossum distance of the randomly selected samples and neurons generated by

CalciumGAN without Phase Shuffle are shown in Figure A.4, and the KL divergence

between the generated samples and recorded data are shown in Figure A.3.

4.3.3 Spatio-temporal convolution

The generative network we have experimented with thus far uses a 1-dimensional

convolution layer, where only the temporal dimension of the data is being modelled.

Chapter 4. Results 26

Here we expanded the network to use a 2-dimensional kernel which is supposed to take

both spatial and temporal information into consideration. We modified the network to

use a 8×8 kernel with a filter size of 20 in both the generator and discriminator so that

the model has a similar number of trainable parameters as CalciumGAN (see Table A.2

for the exact model architecture). Figure A.6 shows a raster plot of all 102 neurons from

a randomly selected trial, and Figure A.8 shows the statistics of the inferred spike trains

measured against the recorded data. We expanded the Phase Shuffle layer to support

3-dimensional data, where the random shift operation was applied to both spatial and

temporal dimensions. In our experiment, the effectiveness of the Phase Shuffle operation

preserves the calcium signal characteristic in the generated data (see Figure A.5 for

examples of generated traces). Overall, we observed slightly worse though similar

results between the use of 1-dimensional convolution versus 2-dimensional convolution

(see Table 4.3).

4.3.4 Frequency-domain data

(a) (b)

Figure 4.9: (a) recorded data and (b) generated sample of Neuron 27 in (top) time-domain

and (bottom) frequency-domain.

Next, we examined whether the GAN model can better capture the statistics of the

recorded data when representing them in their frequency-domain. We used CalciumGAN-

2D as the sample model with the exception of the data having 2 channels instead of 1

channel because of the complex number representation. Samples of recorded and gener-

ated data in the frequency-domain are presented in Figure 4.9; the calcium traces and

Chapter 4. Results 27

spike trains statistics are shown in Section A.3. With the frequency-domain representa-

tion, we obtained marginally better results compared to CalciumGAN-2D, and the mean

KL divergence of the van-Rossum distance is slightly better than for CalciumGAN (see

Table 4.3). Moreover, with the additional computational cost for both 2-dimensional

convolution as well as the Fourier transform and inverse Fourier transform operations,

we use the raw calcium traces in the remainder of this work.

4.3.5 Untrained mice data

The fluorescent calcium signals we have been experimented with thus far were data

recorded on the 4th day of the animal experiment, where the mice were already familiar

with the specific task. We also wanted to verify if CalciumGAN is able to learn from

neural activities that are more stochastic and potentially less correlated. To this end, we

trained the model on the neuronal population data recorded on the 1st day of the mice

experiment (average firing rate of 58.07 Hz on day 1 versus 35.83 Hz on day 4). As

shown in the raster plots on the 1st day (Figure 4.10) and 4th day (Figure 4.5) of the

mice experiment, most neurons recorded from the untrained mice were significantly

more active. Nonetheless, the generated data were able to reflect the low-level statistics

of the recorded data, with mean KL divergence of 0.38, 0.06 and 0.60 when comparing

with the mean firing rate, pairwise correlation and van-Rossum distance, respectively

(see 4.11). Figure A.13 shows first and second-order statistics of the generated samples.

Overall, CalciumGAN was able to capture the statistics and underlying distribution of

the real calcium imaging data acquired in the primary visual cortex of awake, behaving

mice.

Chapter 4. Results 28

0 8 16 25 33 41 50 58 66 75 83
Time (s)

0

2
Neuron #075

recorded signal
inferred spike

0 8 16 25 33 41 50 58 66 75 83
Time (s)

0

2

Neuron #027

0 8 16 25 33 41 50 58 66 75 83
Time (s)

0

2

Neuron #006

0 8 16 25 33 41 50 58 66 75 83
Time (s)

0

1
Neuron #002

0 8 16 25 33 41 50 58 66 75 83
Time (s)

0.0

0.5
Neuron #003

0 8 16 25 33 41 50 58 66 75 83
Time (s)

0

1

Neuron #067

(a)

0 8 16 25 33 41 50 58 66 75 83
Time (s)

0

2
Neuron #075

synthetic signal
inferred spike

0 8 16 25 33 41 50 58 66 75 83
Time (s)

0

2

Neuron #027

0 8 16 25 33 41 50 58 66 75 83
Time (s)

0

2

Neuron #006

0 8 16 25 33 41 50 58 66 75 83
Time (s)

0

1
Neuron #002

0 8 16 25 33 41 50 58 66 75 83
Time (s)

0.0

0.5
Neuron #003

0 8 16 25 33 41 50 58 66 75 83
Time (s)

0

1

Neuron #067

(b)

Figure 4.4: Calcium signals and inferred spike trains (in gray) of randomly selected

neurons. (a) shows the recorded data (in blue) and (b) shows synthetic data (in orange)

generated by CalciumGAN trained on recorded data. Note that the generated data should

not be identical with the recorded data, because CalciumGAN should not replicate the

signals and it could generate a sample corresponding to a different trial.

Chapter 4. Results 29

0 10 20 31 41 52 62 72 83
Time (s)

0

20

40

60

80

100

Ne
ur

on

recorded synthetic

Figure 4.5: Raster plot of inferred real and synthetic spike trains of a randomly selected

sample generated by CalciumGAN trained on recorded data. Blue markers indicate

recorded data and orange markers indicate generated data. The histograms on the

x and y axis indicate the number of spikes over the temporal dimension and neuron

population respectively.

Chapter 4. Results 30

0.0 0.1 0.2 0.3
Hz

0

100

200

300

400

500

Co
un

t

Neuron #075

0.25 0.50 0.75 1.00 1.25
Hz

0

20

40

60

80

100

Co
un

t

Neuron #027

0.5 1.0 1.5 2.0 2.5
Hz

0

50

100

150

Co
un

t

Neuron #006
recorded
synthetic

0.0 0.2 0.4 0.6
Hz

0

100

200

300

400

Co
un

t

Neuron #002

0.0 0.1 0.2 0.3
Hz

0

200

400

600

800

Co
un

t

Neuron #003

0.00 0.02 0.04 0.06
Hz

0

200

400

600

Co
un

t

Neuron #067

(a)

0.25 0.00 0.25 0.50 0.75
Correlation

0

200

400

600

Co
un

t

Sample #844

0.0 0.5 1.0
Correlation

0

500

1000

1500

Co
un

t

Sample #432

0.0 0.5 1.0
Correlation

0

250

500

750

1000

1250
Co

un
t

Sample #278
recorded
synthetic

0.25 0.00 0.25 0.50
Correlation

0

200

400

600

800

1000

Co
un

t

Sample #049

0.0 0.5 1.0
Correlation

0

200

400

600

800

Co
un

t

Sample #948

0.0 0.5 1.0
Correlation

0

200

400

600

800

Co
un

t

Sample #901

(b)

Chapter 4. Results 31

1 24 43 12 41 40 19 10 37 36 35 34 13 32 31 30 29 28 45 26 25 2 15 46 3

synthetic trial

0
47
43
40
39
35
33
32
29
27
26
25
48
22
24

7
1
4

13
8

11
9

38
34

3

re
co

rd
ed

 tr
ia

l

Neuron #075

0

5

10

15

20

25

30

24 25 44 46 47 21 34 43 28 11 22 6 7 4 37 8 31 36 15 45 2 12 1 20 30

synthetic trial

49
45
41
40
22

7
17
21
47
10
16
13

6
42

5
34
35
32
31

2
20
18
14
44
36

re
co

rd
ed

 tr
ia

l

Neuron #027

0

5

10

15

20

25

30

48 36 42 19 37 27 0 5 15 46 32 38 20 18 29 49 45 35 33 40 17 1 7 12 26

synthetic trial

4
45
12
24
11
48
25
26

9
32
10
39
37
34
43

2
28
35

0
23
38
14
27
18
44

re
co

rd
ed

 tr
ia

l

Neuron #006

0

5

10

15

20

25

30

8 25 48 11 22 19 44 9 43 34 24 4 39 6 16 7 42 40 41 45 15 37 17 5 3

synthetic trial

0
46
43
41
48
21
20
19
17
16
15
49

4
5

30
42

3
33
27
38

1
25
22
24

7

re
co

rd
ed

 tr
ia

l

Neuron #002

0

5

10

15

20

25

30

1 13 33 32 12 31 30 36 29 37 20 38 18 41 17 47 46 45 42 2 3 25 23 21 19

synthetic trial

0
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
43
44
45
47
25
48
24

9
1

re
co

rd
ed

 tr
ia

l

Neuron #003

0

5

10

15

20

25

30

2 24 49 23 22 46 44 43 19 36 17 41 40 16 39 45 34 14 33 37 12 32 35 13 11

synthetic trial

49
25
48
21
20
19
18
17
16
15
31
37
29
41
42

5
4

38
46
39
32
33
47
45
35

re
co

rd
ed

 tr
ia

l

Neuron #067

0

5

10

15

20

25

30

(c)

Figure 4.6: First and second-order statistics of data generated from CalciumGAN trained

on the recorded data. Shown neurons and samples were randomly selected. (a) Mean

firing rate distribution over 1000 samples per neuron. (b) Pearson correlation coefficient

distribution. (c) van-Rossum distance between recorded and generated spike trains over

50 samples. Heatmaps were sorted where the pair with the smallest distance value was

placed at the top left corner, followed by the pair with the second smallest distance at

the second-row second column, and so on.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
KL divergence

0

5

10

15

20

25

Co
un

t

Mean firing rate

(a)

0.0 0.1 0.2 0.3 0.4
KL divergence

0

50

100

150

Co
un

t

Correlation

(b)

0.0 0.5 1.0 1.5 2.0
KL divergence

0

50

100

150

Co
un

t

van-Rossum distance

(c)

Figure 4.7: KL divergence of recorded data and generated data distributions. (a) Mean

firing rate of each neuron over 1000 trials. (b) Pairwise Pearson correlation coefficient

over 1000 trials. (c) Pairwise spike train van-Rossum distance over 1000 trials. The

mean KL divergence of each statistics are 0.45, 0.08 and 0.58 respectively.

Chapter 4. Results 32

0 20 41 62 83
Time (s)

0

20

40

60

80

100

Ne
ur

on

recorded synthetic

Figure 4.10: Raster plot of inferred real and synthetic spike trains of a randomly selected

sample generated by CalciumGAN trained on calcium imaging data recorded on the 1st

day of the animal experiment. Blue markers indicate recorded data and orange markers

indicate generated data. The histograms on the x and y axis indicate the number of

spikes over the temporal dimension and neuron population respectively. Compared to

recordings acquired on the 4th day of the experiment, most neurons recorded in the

untrained animal are more active.

0 1 2 3 4
KL divergence

0

5

10

15

20

25

Co
un

t

Mean firing rate

(a)

0.00 0.05 0.10 0.15 0.20
KL divergence

0

25

50

75

100

Co
un

t

Correlation

(b)

0.5 1.0 1.5 2.0
KL divergence

0

50

100

150

Co
un

t

van-Rossum distance

(c)

Figure 4.11: KL divergence of calcium data recorded on day 1 of the animal experiment

and generated data distributions. (a) Mean firing rate of each neuron over 1000 trials.

(b) Pairwise Pearson correlation coefficient over 1000 trials. (c) Pairwise spike train

van-Rossum distance over 1000 trials. The mean KL divergence of each statistics are

0.38, 0.06 and 0.60 respectively.

Chapter 5

Discussion

We demonstrated that the GAN framework is capable of synthesizing realistic fluo-

rescent calcium indicator signals similar to those imaged in the somata of neuronal

populations of behaving animals. To achieve this, we adapted the WaveGAN architec-

ture with the Wasserstein distance training objective. We generated artificial neuronal

activities using a dichotomized Gaussian model, showing that CalciumGAN is able to

learn the underlying distribution of the data. We then fitted our model to imaging data

from the primary visual cortex of behaving mice. Moreover, we showed that the Phase

Shuffle mechanism in both 1-dimensional and 2-dimensional settings can improve

the quality of the generated data, and subsequently the inferred spike train statistics.

We also examined the use of 2-dimensional convolution to model the spatio-temporal

information as well as representing the signals in their frequency-domain, though it

did not yield significant improvement and greatly increased the computational cost

of the model. Nevertheless, we demonstrated that the GAN framework can model

calcium imaging data without the need of incorporating any information of the neuronal

activities into the objective function, unlike many existing statistical generative models.

We believe that this work is beneficial to both the computational neuroscience com-

munity, as well as the machine learning community. Despite the recent advancement

and popularity of calcium imaging of neuronal activity in vivo, the number of trials and

the duration of imaging sessions in animal experiments is limited due to ethical and

practical considerations. Since a GAN based model can generate unlimited amounts

of data, one could potentially reduce the number of trials and their duration in animal

experiments, in accordance with the 3Rs principles of ethical animal research.

33

Chapter 5. Discussion 34

From the technical aspect, we utilized many of the recent advancements in the field

of deep learning and computing. For instance, we incorporated mixed-precision train-

ing which took advantage of the hardware acceleration for half-precision compute

in NVIDIA Turing GPUs [33], which significantly improved our training speed with

minimal loss in accuracy.

5.1 Limitations

We would like to highlight one potential bias in this work. To infer spike trains from

the real and synthetic calcium traces, we used the OASIS deconvolution algorithm

[15], a method which has great real-time deconvolution performance, as well as an

existing Python implementation of the algorithm by the authors [14]. Speed was a

crucial characteristic for evaluating a large number of trials. Nonetheless, we found

that this advantage often came at the cost of performance in the form of clearly missed

spikes (c.f. Figure 4.4). However, we stress that these shortcomings apply to both the

real data and the synthetic data in exactly the same way. In the end, we use the inferred

spikes as a way to validate the plausibility of the synthesized traces. The comparison is

fair as long as real and synthetic deconvolutions are subject to the same biases.

In addition, we didn’t observe significant improvement with the CalciumGAN-2D

variant in our experiment on real recorded data. One possible issue with our approach

was that, as the neurons in recorded data were not sorted based on their physical location

in vivo, modelling the spatial information of unordered data would not be helpful to

the network. Using a larger kernel in the spatial dimension to cover more neurons

could be one potential solution, though that would increase the number of parameters

and make the comparison unfair. Moreover, 2-dimensional convolution increased the

computational cost significantly in our experiment.

5.2 Future Work

As the work in deep generative models continues to develop and expand, there is a

limitless number of possibilities to explore at the intersection of the GAN framework and

neural coding. One potential future direction for this work is to provide a meaningful

interpretation for the latent generator representation z. In many image generation tasks

with GAN [5, 26], it has been shown that the output image can be modified or targeted

Chapter 5. Discussion 35

by interpolating the latent variable that is fed to the generator. Similarly, one could

potentially have final control of the generated calcium signals by exploring the synthetic

calcium signals generated after interpolating samples in the latent space. Thereby, one

could generate calcium imaging data that resemble the neuronal activities of an animal

performing a particular novel task.

Another interesting research direction would be performing style transfer or unpaired

translation on neuronal activities. GANs have shown compelling results in style transfer,

where the generator would receive data input (instead of noise) and convert the input

to a specific class or artistic style. For instance, Yi et al. [62] introduced a framework

that uses two GANs to learn the transformation of images taken in bright daylight and

dark at night, all without paired samples. Huang et al. [24] demonstrated that GANs

can convert timbre sound samples from one instrument to another while preserving

the musical content. Similarly, we can use a GAN (or multiple GANs) to learn the

relationship between different neuron populations or to reveal changes in the activity

of the same neuronal population in different training phases of an animal learning a

behavioural task. This could be achieved by using, for instance, CycleGAN [64], an

unsupervised learning model that can learn the mapping between two distributions

without paired data, as a potential model architecture.

As a concluding remark, this work has demonstrated GAN’s excellent capability in

modelling calcium imaging data of neuronal activities. In addition, we provided an

effective workflow and optimization on how to work with neuronal activity recordings

in a deep learning setting. The ability to produce realistic artificial neuronal activity

patterns and datasets will facilitate the study of the distinct dynamics of neuronal

activity, which is essential to the understanding of the encoding strategies utilized by

neurons. As deep generative models, especially GANs, are becoming more mature, and

calcium imaging is widely used in the neuroscience community, the incorporation of

the two technologies suggests a promising direction into the understanding of neural

information processing.

Appendix A

Appendix

A.1 CalciumGAN without Phase Shuffle

0 20 41 62 83
Time (s)

0

20

40

60

80

100

Ne
ur

on

recorded synthetic

Figure A.1: Raster plot of inferred real and synthetic spike trains of a randomly se-

lected sample generated by CalciumGAN without Phase Shuffle. Blue markers indicate

recorded data and orange markers indicate generated data. The histograms on the x

and y axis indicate number of spikes over the temporal dimension and neuron population

respectively.

36

Appendix A. Appendix 37

0 8 16 25 33 41 50 58 66 75 83
Time (s)

0

2
Neuron #075

recorded signal
inferred spike

0 8 16 25 33 41 50 58 66 75 83
Time (s)

0

2

Neuron #027

0 8 16 25 33 41 50 58 66 75 83
Time (s)

0

2

Neuron #006

0 8 16 25 33 41 50 58 66 75 83
Time (s)

0.0

0.5

Neuron #002

0 8 16 25 33 41 50 58 66 75 83
Time (s)

0.0

0.5
Neuron #003

0 8 16 25 33 41 50 58 66 75 83
Time (s)

0

1

Neuron #067

(a)

0 8 16 25 33 41 50 58 66 75 83
Time (s)

0

2
Neuron #075

synthetic signal
inferred spike

0 8 16 25 33 41 50 58 66 75 83
Time (s)

0

2

Neuron #027

0 8 16 25 33 41 50 58 66 75 83
Time (s)

0

2

Neuron #006

0 8 16 25 33 41 50 58 66 75 83
Time (s)

0.0

0.5

Neuron #002

0 8 16 25 33 41 50 58 66 75 83
Time (s)

0.0

0.5
Neuron #003

0 8 16 25 33 41 50 58 66 75 83
Time (s)

0

1

Neuron #067

(b)

Figure A.2: Calcium signals and inferred spike trains (in gray) of randomly selected

neurons generated by CalciumGAN without Phase Shuffle. (a) shows the recorded data

(in blue) and (b) shows synthetic data (in orange). Notice the typical calcium signal

characteristics of the sharp rise to peak followed by a tail of decaying signal are less

observable in the generated data.

Appendix A. Appendix 38

0 2 4 6
KL divergence

0

5

10

15

20

Co
un

t

Mean firing rate

(a)

0.0 0.2 0.4
KL divergence

0

50

100

150

Co
un

t

Correlation

(b)

0.0 0.5 1.0 1.5 2.0
KL divergence

0

20

40

60

80

100

Co
un

t

van-Rossum distance

(c)

Figure A.3: KL divergence of recorded data and generated data distributions. The mean

KL divergence of each statistics are 1.05, 0.11 and 0.73 respectively.

0.00 0.05 0.10 0.15 0.20
Hz

0

100

200

300

400

500

Co
un

t

Neuron #075

0.00 0.25 0.50 0.75 1.00 1.25
Hz

0

25

50

75

100

Co
un

t
Neuron #027

0.5 1.0 1.5 2.0 2.5
Hz

0

50

100

150

Co
un

t

Neuron #006
recorded
synthetic

0.0 0.2 0.4 0.6
Hz

0

100

200

300

400

Co
un

t

Neuron #002

0.0 0.1 0.2 0.3
Hz

0

200

400

600

Co
un

t

Neuron #003

0.00 0.01 0.02 0.03 0.04
Hz

0

200

400

600

800

Co
un

t

Neuron #067

(a)

0.0 0.5 1.0
Correlation

0

250

500

750

1000

1250

Co
un

t

Sample #844

0.5 0.0 0.5 1.0
Correlation

0

250

500

750

1000

1250

Co
un

t

Sample #432

0.0 0.5 1.0
Correlation

0

250

500

750

1000

1250

Co
un

t

Sample #278
recorded
synthetic

0.5 0.0 0.5 1.0
Correlation

0

200

400

600

800

1000

Co
un

t

Sample #049

0.5 0.0 0.5 1.0
Correlation

0

250

500

750

1000

1250

Co
un

t

Sample #948

0.5 0.0 0.5 1.0
Correlation

0

200

400

600

800

1000

Co
un

t

Sample #901

(b)

Appendix A. Appendix 39

1 49 21 42 41 40 19 38 45 36 17 43 35 29 28 13 25 26 46 10 23 22 11 3 4

synthetic trial

0
44
42
40
38
36
31
30
28
27
26
25
22
18
17
24
49
15

6
7
9
3
4

11
48

re
co

rd
ed

 tr
ia

l

Neuron #075

0

5

10

15

20

25

30

37 41 47 36 33 21 2 43 40 12 8 35 39 32 1 30 17 26 7 28 16 20 38 10 11

synthetic trial

38
28
10

2
29
13

3
42

9
43
37
12
24

5
20
48
35
34
16

4
23
49

8
6

33

re
co

rd
ed

 tr
ia

l

Neuron #027

0

5

10

15

20

25

30

14 22 48 35 42 26 6 15 18 17 20 49 27 9 23 2 44 33 16 39 13 12 0 24 29

synthetic trial

45
18
21
47
41
22
32
17
44

6
26
36

0
31
30

9
7

15
35
49
12

1
8
5

33

re
co

rd
ed

 tr
ia

l

Neuron #006

0

5

10

15

20

25

30

5 49 36 34 25 37 28 46 6 14 13 23 40 9 12 22 31 11 15 41 7 44 43 27 24

synthetic trial

18
34
31
29
26
23
22
19
36
17
16
43
37

2
10
44

7
11
39
40
48
25
14

9
0

re
co

rd
ed

 tr
ia

l

Neuron #002

0

5

10

15

20

25

30

0 47 46 22 45 21 44 20 43 19 42 18 41 17 40 33 32 31 9 14 38 13 37 12 36

synthetic trial

0
22
48
25
26
27
28
30
21
31
36
38
39
40
42
44
46
33
20
24
18

1
3
4
5

re
co

rd
ed

 tr
ia

l

Neuron #003

0

5

10

15

20

25

30

0 24 47 21 20 22 45 44 43 18 42 19 41 39 40 17 16 37 38 15 14 35 36 13 12

synthetic trial

0
44
43
42
37
34
31
29
27
23
22
19
18
16
24
13

2
10

9
7
6

15
46

1
40

re
co

rd
ed

 tr
ia

l

Neuron #067

0

5

10

15

20

25

30

(c)

Figure A.4: First and second order statistics of data generated from CalciumGAN without

Phase Shuffle. Shown neurons and samples were randomly selected. (a) Mean firing

rate distribution over 1000 samples per neuron. (b) Pearson correlation coefficient

distribution. (c) van-Rossum distance between recorded and generated spike trains over

50 samples.

Appendix A. Appendix 40

A.2 CalciumGAN-2D

Hyper-parameters Value

Filters 20

Kernel size (8, 8)

Stride (2, 1)

Noise dimension 32

Critic update 5

Gradient Penalty (λ) 10

Batch size (bs) 128

Epochs 400

Learning rate 0.0001

Phase shift (m) 10

Phase shift (n) 10

Table A.1: CalciumGAN-2D hyperparamters

Appendix A. Appendix 41

Layer Output shape

Input (bs, 32)

Dense (bs, 104448)

LeakyRelu (bs, 104448)

Reshape (bs, 64, 51, 32)

Conv2DTranspose (bs, 128, 51, 100)

LayerNorm (bs, 128, 51, 100)

LeakyRelu (bs, 128, 51, 100)

Conv2DTranspose (bs, 256, 51, 60)

LayerNorm (bs, 256, 51, 60)

LeakyRelu (bs, 256, 51, 60)

Conv2DTranspose (bs, 512, 102, 40)

LayerNorm (bs, 512, 102, 40)

LeakyRelu (bs, 512, 102, 40)

Conv2DTranspose (bs, 1024, 102, 20)

LayerNorm (bs, 1024, 102, 20)

LeakyRelu (bs, 1024, 102, 20)

Conv2DTranspose (bs, 2048, 102, 1)

LayerNorm (bs, 2048, 102, 1)

LeakyRelu (bs, 2048, 102, 1)

Dense (bs, 2048, 102, 1)

Sigmoid (bs, 2048, 102, 1)

(a) Generator architecture

Layer Output shape

Input (bs, 2048, 102, 1)

Conv2D (bs, 512, 102, 20)

LeakyRelu (bs, 512, 102, 20)

PhaseShuffle (bs, 512, 102, 20)

Conv2D (bs, 128, 102, 40)

LeakyRelu (bs, 128, 102, 40)

PhaseShuffle (bs, 128, 102, 40)

Conv2D (bs, 32, 102, 60)

LeakyRelu (bs, 32, 102, 60)

PhaseShuffle (bs, 32, 102, 60)

Conv2D (bs, 8, 102, 80)

LeakyRelu (bs, 8, 102, 80)

PhaseShuffle (bs, 8, 102, 80)

Conv2D (bs, 2, 102, 100)

LeakyRelu (bs, 2, 102, 100)

Flatten (bs, 20400)

Dense (bs, 1)

(b) Discriminator architecture

Table A.2: The generator (a) and discriminator (b) architecture of CalciumGAN-2D. The

main differences between CalciumGAN and its 2D variant is the use of 2D transposed

convolution layer in the generator, and 2D convolution and Phase Shift layer in the

discriminator. The generator consists of 4,242,329 parameters, and the discriminator

consists of 4,121,821 parameters. Note bs denotes batch size.

Appendix A. Appendix 42

0 8 16 25 33 41 50 58 66 75 83
Time (s)

0

1
Neuron #075

recorded signal
inferred spike

0 8 16 25 33 41 50 58 66 75 83
Time (s)

0.0

2.5

Neuron #027

0 8 16 25 33 41 50 58 66 75 83
Time (s)

0

2

Neuron #006

0 8 16 25 33 41 50 58 66 75 83
Time (s)

0

1
Neuron #002

0 8 16 25 33 41 50 58 66 75 83
Time (s)

0

1 Neuron #003

0 8 16 25 33 41 50 58 66 75 83
Time (s)

0.0

0.5

Neuron #067

(a)

0 8 16 25 33 41 50 58 66 75 83
Time (s)

0

1
Neuron #075

synthetic signal
inferred spike

0 8 16 25 33 41 50 58 66 75 83
Time (s)

0.0

2.5

Neuron #027

0 8 16 25 33 41 50 58 66 75 83
Time (s)

0

2

Neuron #006

0 8 16 25 33 41 50 58 66 75 83
Time (s)

0

1
Neuron #002

0 8 16 25 33 41 50 58 66 75 83
Time (s)

0

1 Neuron #003

0 8 16 25 33 41 50 58 66 75 83
Time (s)

0.0

0.5

Neuron #067

(b)

Figure A.5: Calcium signals and inferred spike trains (in gray) of randomly selected

neurons. (a) shows the recorded data (in blue) and (b) shows synthetic data (in orange)

generated by CalciumGAN-2D trained on recorded data.

Appendix A. Appendix 43

0 10 20 31 41 52 62 72 83
Time (s)

0

20

40

60

80

100

Ne
ur

on

recorded synthetic

Figure A.6: Raster plot of inferred real and synthetic spike trains of a randomly selected

sample generated by CalciumGAN-2D trained on recorded data. Blue markers indicate

recorded data and orange markers indicate generated data. The histograms on the x

and y axis indicate number of spikes over the temporal dimension and neuron population

respectively.

0 1 2 3 4
KL divergence

0

10

20

30

Co
un

t

Mean firing rate

(a)

0.0 0.1 0.2 0.3 0.4
KL divergence

0

50

100

150

Co
un

t

Correlation

(b)

0.0 0.5 1.0 1.5 2.0
KL divergence

0

50

100

150

Co
un

t

van-Rossum distance

(c)

Figure A.7: KL divergence of recorded data and generated data distributions. The mean

KL divergence of each statistics are 0.54, 0.12 and 0.59 respectively.

Appendix A. Appendix 44

0.00 0.05 0.10 0.15 0.20 0.25
Hz

0

100

200

300

400

Co
un

t

Neuron #075

0.5 1.0 1.5
Hz

0

25

50

75

100

125

Co
un

t

Neuron #027

0.5 1.0 1.5 2.0 2.5
Hz

0

25

50

75

100

125

Co
un

t

Neuron #006
recorded
synthetic

0.0 0.2 0.4 0.6
Hz

0

100

200

300

400

Co
un

t

Neuron #002

0.0 0.1 0.2 0.3
Hz

0

200

400

600

800

Co
un

t

Neuron #003

0.00 0.01 0.02 0.03 0.04
Hz

0

200

400

600

Co
un

t

Neuron #067

(a)

0.0 0.5 1.0
Correlation

0

200

400

600

800

1000

Co
un

t

Sample #844

0.0 0.5 1.0
Correlation

0

200

400

600

800

Co
un

t

Sample #432

0.0 0.5 1.0
Correlation

0

200

400

600

800

Co
un

t

Sample #278
recorded
synthetic

0.0 0.5 1.0
Correlation

0

500

1000

1500

Co
un

t

Sample #049

0.5 0.0 0.5 1.0
Correlation

0

500

1000

1500

Co
un

t

Sample #948

0.25 0.00 0.25 0.50 0.75
Correlation

0

250

500

750

1000

1250

Co
un

t
Sample #901

(b)

Appendix A. Appendix 45

0 2 3 9 37 19 17 33 36 6 49 38 23 41 10 43 29 35 13 1 4 12 14 45 11

synthetic trial

24
29
28
37
26
38
40
20
19
18
43
44
14
34

1
3

46
9
8
4

13
45
25

5
47

re
co

rd
ed

 tr
ia

l

Neuron #075

0

5

10

15

20

25

30

21 16 31 27 26 28 19 18 39 32 47 12 38 17 2 24 41 13 43 25 49 37 8 30 14

synthetic trial

7
12
37

8
0

38
45
39

5
24
43
11
32
29
26
47

6
25
36
30
31
23

4
21
16

re
co

rd
ed

 tr
ia

l

Neuron #027

0

5

10

15

20

25

30

9 30 7 44 40 0 22 11 1 46 4 29 42 48 45 17 10 32 23 3 43 36 24 41 37

synthetic trial

15
4
1

18
33
14
17

9
11
35
31
34
46
22
10
40
27
44
20
13
47
26

3
49

7

re
co

rd
ed

 tr
ia

l

Neuron #006

0

5

10

15

20

25

30

16 27 35 45 3 47 14 13 8 0 18 39 10 17 36 12 46 44 7 21 40 23 6 48 22

synthetic trial

0
23
48
39
13
12
21

9
36
42

6
44
30
32

2
1

40
28
16
18
19
20
41
34
11

re
co

rd
ed

 tr
ia

l

Neuron #002

0

5

10

15

20

25

30

1 38 37 40 25 11 20 10 2 17 42 41 33 5 7 24 32 34 31 9 30 36 19 4 6

synthetic trial

24
29
28
34
26
25
37
38
40
20
19
18
41
16
43
46

1
47

3
4
5

14
31

8
9

re
co

rd
ed

 tr
ia

l

Neuron #003

0

5

10

15

20

25

30

0 24 23 47 44 45 41 20 21 43 16 33 15 14 38 13 12 37 27 9 31 17 35 25 32

synthetic trial

0
32
48
23
36
21
39
40
42
14
31
12
30

9
45

7
6
4

47
2
1

11
44
41
38

re
co

rd
ed

 tr
ia

l

Neuron #067

0

5

10

15

20

25

30

(c)

Figure A.8: First and second order statistics of data generated from CalciumGAN trained

on the recorded data. Shown neurons and samples were randomly selected. (a) Mean

firing rate distribution over 1000 samples per neuron. (b) Pearson correlation coefficient

distribution. (c) van-Rossum distance between recorded and generated spike trains over

50 samples.

Appendix A. Appendix 46

A.3 CalciumGAN-2D FFT

0 8 16 25 33 41 50 58 66 75 83
Time (s)

0

1
Neuron #075

recorded signal
inferred spike

0 8 16 25 33 41 50 58 66 75 83
Time (s)

0

2

Neuron #027

0 8 16 25 33 41 50 58 66 75 83
Time (s)

0.0

2.5
Neuron #006

0 8 16 25 33 41 50 58 66 75 83
Time (s)

0

1
Neuron #002

0 8 16 25 33 41 50 58 66 75 83
Time (s)

0.5

0.0

0.5

Neuron #003

0 8 16 25 33 41 50 58 66 75 83
Time (s)

0.5

0.0

0.5
Neuron #067

(a)

0 8 16 25 33 41 50 58 66 75 83
Time (s)

0

1
Neuron #075

synthetic signal
inferred spike

0 8 16 25 33 41 50 58 66 75 83
Time (s)

0

2

Neuron #027

0 8 16 25 33 41 50 58 66 75 83
Time (s)

0.0

2.5
Neuron #006

0 8 16 25 33 41 50 58 66 75 83
Time (s)

0

1
Neuron #002

0 8 16 25 33 41 50 58 66 75 83
Time (s)

0.5

0.0

0.5

Neuron #003

0 8 16 25 33 41 50 58 66 75 83
Time (s)

0.5

0.0

0.5
Neuron #067

(b)

Figure A.9: Calcium signals and inferred spike trains (in gray) of randomly selected

neurons generated by CalciumGAN-2D FFT. (a) shows the recorded data (in blue) and

(b) shows synthetic data (in orange).

Appendix A. Appendix 47

0 20 41 62 83
Time (s)

0

20

40

60

80

100

Ne
ur

on

recorded synthetic

Figure A.10: Raster plot of inferred real and synthetic spike trains of a randomly selected

sample generated by CalciumGAN-2D FFT. Blue markers indicate recorded data and

orange markers indicate generated data. The histograms on the x and y axis indicate

number of spikes over the temporal dimension and neuron population respectively.

0 1 2 3 4
KL divergence

0

10

20

30

Co
un

t

Mean firing rate

(a)

0.0 0.1 0.2 0.3 0.4 0.5
KL divergence

0

25

50

75

100

125

Co
un

t

Correlation

(b)

0.0 0.5 1.0 1.5 2.0
KL divergence

0

25

50

75

100

Co
un

t

van-Rossum distance

(c)

Figure A.11: KL divergence of recorded data and generated data distributions. The

mean KL divergence of each statistics are 0.50, 0.11 and 0.58 respectively.

Appendix A. Appendix 48

0.00 0.05 0.10 0.15 0.20
Hz

0

100

200

300

400

Co
un

t

Neuron #075

0.25 0.50 0.75 1.00 1.25
Hz

0

25

50

75

100

Co
un

t

Neuron #027

0.5 1.0 1.5 2.0 2.5
Hz

0

50

100

150

Co
un

t

Neuron #006
recorded
synthetic

0.0 0.2 0.4 0.6
Hz

0

100

200

300

400

Co
un

t

Neuron #002

0.0 0.1 0.2 0.3
Hz

0

200

400

600

800

Co
un

t

Neuron #003

0.00 0.01 0.02 0.03 0.04
Hz

0

200

400

600

800

Co
un

t

Neuron #067

(a)

0.0 0.5 1.0
Correlation

0

200

400

600

800

1000

Co
un

t

Sample #844

0.0 0.5 1.0
Correlation

0

250

500

750

1000

1250

Co
un

t

Sample #432

0.0 0.5 1.0
Correlation

0

200

400

600

800

Co
un

t

Sample #278
recorded
synthetic

0.0 0.5 1.0
Correlation

0

250

500

750

1000

1250

Co
un

t

Sample #049

0.0 0.5 1.0
Correlation

0

200

400

600

800

Co
un

t

Sample #948

0.0 0.5 1.0
Correlation

0

200

400

600

800

1000
Co

un
t

Sample #901

(b)

Appendix A. Appendix 49

6 35 34 31 7 8 14 12 0 24 17 2 18 42 32 16 48 37 40 27 21 1 45 22 28

synthetic trial

41
26
25
48
23
22
31
34
18
38
27
13
29
42
10

9
8

44
5
4
3

45
12
39
36

re
co

rd
ed

 tr
ia

l

Neuron #075

0

5

10

15

20

25

30

35

42 2 10 30 3 37 27 11 33 1 41 17 40 24 18 35 5 22 31 28 13 36 9 16 19

synthetic trial

38
25
43
49

0
17
26
39
30

6
34
23

9
4

29
48
22
42
13

2
32
28
14
44
15

re
co

rd
ed

 tr
ia

l

Neuron #027

0

5

10

15

20

25

30

35

42 40 17 31 7 9 13 19 10 34 4 14 5 24 8 49 28 18 43 25 22 44 48 32 12

synthetic trial

38
23

7
29
47

2
4
5

43
14
36
33

9
30
10
18
31
25
34
27
37
20
12

8
45

re
co

rd
ed

 tr
ia

l

Neuron #006

0

5

10

15

20

25

30

35

14 20 4 21 32 44 34 16 37 12 8 48 36 26 27 15 0 18 2 39 17 45 11 49 40

synthetic trial

16
18
31
12
11
10

8
32
45

5
36

3
23
14
27

1
20
22
13
44
42

7
25
46
47

re
co

rd
ed

 tr
ia

l

Neuron #002

0

5

10

15

20

25

30

35

0 24 49 9 46 28 29 44 35 32 19 31 40 48 25 5 6 10 7 17 34 33 13 22 38

synthetic trial

0
23
48
25
26
27
28
29
30
22
31
36
38
39
41
42
43
44
45
34
21
49
19

4
8

re
co

rd
ed

 tr
ia

l

Neuron #003

0

5

10

15

20

25

30

35

0 24 23 47 46 22 45 20 42 21 43 19 41 18 40 17 14 37 38 11 34 32 31 35 29

synthetic trial

49
28
20
31
32
16
34
11
10
12

8
6
2
1

48
41
26
38
36
43
45
47
30
29
39

re
co

rd
ed

 tr
ia

l

Neuron #067

0

5

10

15

20

25

30

35

(c)

Figure A.12: First and second order statistics of data generated from CalciumGAN-

2D trained on data in frequecy-domain. Shown neurons and samples were randomly

selected. (a) Mean firing rate distribution over 1000 samples per neuron. (b) Pearson

correlation coefficient distribution. (c) van-Rossum distance between recorded and

generated spike trains over 50 samples.

Appendix A. Appendix 50

A.4 Untrained mice data

0.0 0.2 0.4 0.6
Hz

0

20

40

60

80
Co

un
t

Neuron #075

0.0 0.2 0.4 0.6 0.8
Hz

0

50

100

150

Co
un

t

Neuron #027

0.5 1.0 1.5
Hz

0

20

40

60

80

Co
un

t

Neuron #006
recorded
synthetic

0.0 0.2 0.4 0.6
Hz

0

50

100

150

200

250

Co
un

t

Neuron #002

0.0 0.2 0.4 0.6 0.8 1.0
Hz

0

50

100

150

200

250

Co
un

t

Neuron #003

0.0 0.2 0.4 0.6
Hz

0

100

200

300

Co
un

t

Neuron #067

(a)

0.5 0.0 0.5 1.0
Correlation

0

250

500

750

1000

1250

Co
un

t

Sample #844

0.0 0.5 1.0
Correlation

0

500

1000

1500

Co
un

t

Sample #432

0.5 0.0 0.5 1.0
Correlation

0

250

500

750

1000

Co
un

t

Sample #278
recorded
synthetic

0.5 0.0 0.5 1.0
Correlation

0

200

400

600

800

1000

Co
un

t

Sample #049

0.5 0.0 0.5 1.0
Correlation

0

500

1000

1500

Co
un

t

Sample #948

0.5 0.0 0.5 1.0
Correlation

0

200

400

600

800

Co
un

t

Sample #901

(b)

Appendix A. Appendix 51

1 48 23 13 49 33 39 6 30 16 24 28 0 22 15 38 12 41 5 19 3 44 31 25 26

synthetic trial

23
27
24
20

4
41
49
42
10

1
47
38
19
39
44
29
48

5
2

17
34
37
15
31
45

re
co

rd
ed

 tr
ia

l

Neuron #075

0

5

10

15

20

25

30

23 13 1 28 42 31 2 6 48 26 12 41 35 27 38 30 43 22 33 3 44 18 19 34 25

synthetic trial

34
31
24
29
18
38
46
30
47
10

2
49
44
39

5
27
32
11

4
19
12
15
40
41
37

re
co

rd
ed

 tr
ia

l

Neuron #027

0

5

10

15

20

25

30

23 16 31 4 33 40 7 47 37 10 42 41 1 21 3 46 26 20 5 30 38 19 25 11 44

synthetic trial

34
31
27

1
41
43

4
40

2
29
19
49
14
36
38
39
44
24
10
18
35
25

5
15
12

re
co

rd
ed

 tr
ia

l

Neuron #006

0

5

10

15

20

25

30

1 38 25 48 33 13 31 6 22 30 16 28 49 23 41 42 43 3 11 12 19 24 29 2 37

synthetic trial

10
24
49

1
34

4
41
31
27
48
38
19
37
44

2
5

47
39
15
29
26
46
12
33
11

re
co

rd
ed

 tr
ia

l

Neuron #002

0

5

10

15

20

25

30

14 27 39 35 26 18 17 15 12 32 34 45 0 29 20 21 36 46 11 5 24 3 2 19 44

synthetic trial

0
30
25

6
8
9

21
13
16

3
28
45
22
42
23
17
20
33
35
32
46
29
18

7
12

re
co

rd
ed

 tr
ia

l

Neuron #003

0

5

10

15

20

25

30

47 20 39 38 34 46 32 21 1 35 0 27 11 5 29 40 42 26 12 6 18 43 45 4 2

synthetic trial

47
21
38

0
25

6
8

30
15
28
16

9
3

22
45
13
17
20
24
49
40
29
37
48
19

re
co

rd
ed

 tr
ia

l

Neuron #067

0

5

10

15

20

25

30

(c)

Figure A.13: First and second order statistics of data generated from CalciumGAN

trained on calcium imaging data recorded on day one of the animal experiment. Shown

neurons and samples were randomly selected. (a) Mean firing rate distribution over 1000

samples per neuron. (b) Pearson correlation coefficient distribution. (c) van-Rossum

distance between recorded and generated spike trains over 50 samples. Heatmaps were

sorted where the pair with the smallest distance value was placed at the top left corner,

followed by the pair with the second smallest distance at the second row second column,

and so on.

Bibliography

[1] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S.,

Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving,

G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané,

D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner,

B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F.,

Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X. (2015).

TensorFlow: Large-scale machine learning on heterogeneous systems. Software

available from tensorflow.org.

[2] Arjovsky, M., Chintala, S., and Bottou, L. (2017). Wasserstein gan. arXiv preprint

arXiv:1701.07875.

[3] Bergstra, J. and Bengio, Y. (2012). Random search for hyper-parameter optimiza-

tion. The Journal of Machine Learning Research, 13(1):281–305.

[4] Berridge, M. J., Lipp, P., and Bootman, M. D. (2000). The versatility and universal-

ity of calcium signalling. Nature reviews Molecular cell biology, 1(1):11–21.

[5] Bojanowski, P., Joulin, A., Lopez-Paz, D., and Szlam, A. (2017). Optimizing the

latent space of generative networks. arXiv preprint arXiv:1707.05776.

[6] Brown, E. N., Kass, R. E., and Mitra, P. P. (2004). Multiple neural spike train data

analysis: state-of-the-art and future challenges. Nature neuroscience, 7(5):456–461.

[7] Caccia, M., Caccia, L., Fedus, W., Larochelle, H., Pineau, J., and Charlin, L. (2018).

Language gans falling short. arXiv preprint arXiv:1811.02549.

[8] Che, T., Li, Y., Jacob, A. P., Bengio, Y., and Li, W. (2016). Mode regularized

generative adversarial networks. arXiv preprint arXiv:1612.02136.

[9] Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., and Abbeel, P.

52

Bibliography 53

(2016). Infogan: Interpretable representation learning by information maximizing

generative adversarial nets. In Advances in neural information processing systems,

pages 2172–2180.

[10] Dayan, P. and Abbott, L. F. (2001). Theoretical neuroscience: computational and

mathematical modeling of neural systems.

[11] Donahue, C., McAuley, J., and Puckette, M. (2019). Adversarial audio synthesis.

In International Conference on Learning Representations.

[12] Engel, J., Agrawal, K. K., Chen, S., Gulrajani, I., Donahue, C., and Roberts,

A. (2019). Gansynth: Adversarial neural audio synthesis. arXiv preprint

arXiv:1902.08710.

[13] Engel, J., Resnick, C., Roberts, A., Dieleman, S., Norouzi, M., Eck, D., and

Simonyan, K. (2017). Neural audio synthesis of musical notes with wavenet autoen-

coders. In International Conference on Machine Learning, pages 1068–1077.

[14] Friedrich, J. (2017). Oasis. https://github.com/j-friedrich/OASIS.

[15] Friedrich, J., Zhou, P., and Paninski, L. (2017). Fast online deconvolution of

calcium imaging data. PLoS computational biology, 13(3):e1005423.

[16] Fröhlich, F. (2016). Chapter 11 - optical measurements and perturbations. In

Fröhlich, F., editor, Network Neuroscience, pages 145 – 159. Academic Press, San

Diego.

[17] Ganmor, E., Segev, R., and Schneidman, E. (2011). The architecture of functional

interaction networks in the retina. Journal of Neuroscience, 31(8):3044–3054.

[18] Gomez, A. N., Huang, S., Zhang, I., Li, B. M., Osama, M., and Kaiser, L. (2018).

Unsupervised cipher cracking using discrete gans. arXiv preprint arXiv:1801.04883.

[19] Goodfellow, I. (2016). Nips 2016 tutorial: Generative adversarial networks. arXiv

preprint arXiv:1701.00160.

[20] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,

Courville, A., and Bengio, Y. (2014). Generative adversarial nets. In Ghahramani, Z.,

Welling, M., Cortes, C., Lawrence, N. D., and Weinberger, K. Q., editors, Advances

in Neural Information Processing Systems 27, pages 2672–2680. Curran Associates,

Inc.

https://github.com/j-friedrich/OASIS

Bibliography 54

[21] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., and Courville, A. C. (2017).

Improved training of wasserstein gans. In Advances in neural information processing

systems, pages 5767–5777.

[22] Hartmann, K. G., Schirrmeister, R. T., and Ball, T. (2018). Eeg-gan: Generative

adversarial networks for electroencephalograhic (eeg) brain signals. arXiv preprint

arXiv:1806.01875.

[23] Henschke, J. U., Dylda, E., Katsanevaki, D., Dupuy, N., Currie, S. P., Amvrosiadis,

T., Pakan, J. M., and Rochefort, N. L. (2020). Reward association enhances stimulus-

specific representations in primary visual cortex. Current Biology.

[24] Huang, S., Li, Q., Anil, C., Bao, X., Oore, S., and Grosse, R. B. (2018). Timbretron:

A wavenet (cyclegan (cqt (audio))) pipeline for musical timbre transfer. arXiv

preprint arXiv:1811.09620.

[25] Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network

training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167.

[26] Karras, T., Aila, T., Laine, S., and Lehtinen, J. (2017). Progressive growing of

gans for improved quality, stability, and variation. arXiv preprint arXiv:1710.10196.

[27] Kawaguchi, K., Kaelbling, L. P., and Bengio, Y. (2017). Generalization in deep

learning. arXiv preprint arXiv:1710.05468.

[28] Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980.

[29] Lee, J., Park, J., Kim, K. L., and Nam, J. (2017). Sample-level deep convolu-

tional neural networks for music auto-tagging using raw waveforms. arXiv preprint

arXiv:1703.01789.

[30] Lyamzin, D. R., Macke, J. H., and Lesica, N. A. (2010). Modeling population

spike trains with specified time-varying spike rates, trial-to-trial variability, and

pairwise signal and noise correlations. Frontiers in computational neuroscience,

4:144.

[31] Macke, J. H., Berens, P., Ecker, A. S., Tolias, A. S., and Bethge, M. (2009).

Generating spike trains with specified correlation coefficients. Neural computation,

21(2):397–423.

Bibliography 55

[32] Maddison, C. J., Mnih, A., and Teh, Y. W. (2016). The concrete distribution: A

continuous relaxation of discrete random variables.

[33] Micikevicius, P. (2017). Mixed-precision training of deep neural networks.

[34] Micikevicius, P., Narang, S., Alben, J., Diamos, G., Elsen, E., Garcia, D., Ginsburg,

B., Houston, M., Kuchaiev, O., Venkatesh, G., et al. (2017). Mixed precision training.

arXiv preprint arXiv:1710.03740.

[35] Mirza, M. and Osindero, S. (2014). Conditional generative adversarial nets. arXiv

preprint arXiv:1411.1784.

[36] Molano-Mazon, M., Onken, A., Piasini*, E., and Panzeri*, S. (2018). Synthesizing

realistic neural population activity patterns using generative adversarial networks. In

International Conference on Learning Representations.

[37] Nasser, H., Marre, O., and Cessac, B. (2013). Spatio-temporal spike train

analysis for large scale networks using the maximum entropy principle and

monte carlo method. Journal of Statistical Mechanics: Theory and Experiment,

2013(03):P03006.

[38] NeuralEnsemble (2019). Elephant.

[39] Odena, A., Dumoulin, V., and Olah, C. (2016). Deconvolution and checkerboard

artifacts. Distill.

[40] O’Malley, T., Bursztein, E., Long, J., Chollet, F., Jin, H., Invernizzi, L., et al.

(2019). Keras Tuner. https://github.com/keras-team/keras-tuner.

[41] Oord, A. v. d., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A.,

Kalchbrenner, N., Senior, A., and Kavukcuoglu, K. (2016). Wavenet: A generative

model for raw audio. arXiv preprint arXiv:1609.03499.

[42] Pakan, J. M., Currie, S. P., Fischer, L., and Rochefort, N. L. (2018). The impact

of visual cues, reward, and motor feedback on the representation of behaviorally

relevant spatial locations in primary visual cortex. Cell reports, 24(10):2521–2528.

[43] Pan, Z., Yu, W., Yi, X., Khan, A., Yuan, F., and Zheng, Y. (2019). Recent progress

on generative adversarial networks (gans): A survey. IEEE Access, 7:36322–36333.

[44] Pandarinath, C., O’Shea, D. J., Collins, J., Jozefowicz, R., Stavisky, S. D., Kao,

J. C., Trautmann, E. M., Kaufman, M. T., Ryu, S. I., Hochberg, L. R., et al. (2018).

https://github.com/keras-team/keras-tuner

Bibliography 56

Inferring single-trial neural population dynamics using sequential auto-encoders.

Nature methods, page 1.

[45] Peters, A. J., Chen, S. X., and Komiyama, T. (2014). Emergence of reproducible

spatiotemporal activity during motor learning. Nature, 510(7504):263–267.

[46] Pillow, J. W., Shlens, J., Paninski, L., Sher, A., Litke, A. M., Chichilnisky, E.,

and Simoncelli, E. P. (2008). Spatio-temporal correlations and visual signalling in a

complete neuronal population. Nature, 454(7207):995–999.

[47] Ramesh, P., Atayi, M., and Macke, J. H. (2019). Adversarial training of neural

encoding models on population spike trains.

[48] Rey, H. G., Pedreira, C., and Quiroga, R. Q. (2015). Past, present and future of

spike sorting techniques. Brain research bulletin, 119:106–117.

[49] Rossum, M. v. (2001). A novel spike distance. Neural computation, 13(4):751–

763.

[50] Russell, J. T. (2011). Imaging calcium signals in vivo: a powerful tool in physiol-

ogy and pharmacology. British journal of pharmacology, 163(8):1605–1625.

[51] Saxena, S. and Cunningham, J. P. (2019). Towards the neural population doctrine.

[52] Schneidman, E., Berry, M. J., Segev, R., and Bialek, W. (2006). Weak pairwise

correlations imply strongly correlated network states in a neural population. Nature,

440(7087):1007–1012.

[53] Staude, B., Rotter, S., and Grün, S. (2010). Cubic: cumulant based inference of

higher-order correlations in massively parallel spike trains. Journal of computational

neuroscience, 29(1-2):327–350.

[54] Stevenson, I. H. and Kording, K. P. (2011). How advances in neural recording

affect data analysis. Nature Neuroscience, 14(2):139–142.

[55] Stosiek, C., Garaschuk, O., Holthoff, K., and Konnerth, A. (2003). In vivo two-

photon calcium imaging of neuronal networks. Proceedings of the National Academy

of Sciences, 100(12):7319–7324.

[56] Stringer, C., Michaelos, M., and Pachitariu, M. (2019). High precision coding in

visual cortex. bioRxiv.

[57] Tang, A., Jackson, D., Hobbs, J., Chen, W., Smith, J. L., Patel, H., Prieto, A.,

Bibliography 57

Petrusca, D., Grivich, M. I., Sher, A., et al. (2008). A maximum entropy model

applied to spatial and temporal correlations from cortical networks in vitro. Journal

of Neuroscience, 28(2):505–518.

[58] Tkačik, G., Marre, O., Amodei, D., Schneidman, E., Bialek, W., and Berry II,

M. J. (2014). Searching for collective behavior in a large network of sensory neurons.

PLoS Comput Biol, 10(1):e1003408.

[59] Villani, C. (2008). Optimal transport: old and new, volume 338. Springer Science

& Business Media.

[60] Wei, Z., Lin, B.-J., Chen, T.-W., Daie, K., Svoboda, K., and Druckmann, S. (2019).

A comparison of neuronal population dynamics measured with calcium imaging and

electrophysiology. bioRxiv, page 840686.

[61] Williams, R. J. (1992). Simple statistical gradient-following algorithms for con-

nectionist reinforcement learning. Machine learning, 8(3-4):229–256.

[62] Yi, Z., Zhang, H., Tan, P., and Gong, M. (2017). Dualgan: Unsupervised dual

learning for image-to-image translation. In Proceedings of the IEEE international

conference on computer vision, pages 2849–2857.

[63] Zhang, Y., Gan, Z., Fan, K., Chen, Z., Henao, R., Shen, D., and Carin, L. (2017).

Adversarial feature matching for text generation. In Proceedings of the 34th Inter-

national Conference on Machine Learning-Volume 70, pages 4006–4015. JMLR.

org.

[64] Zhu, J.-Y., Park, T., Isola, P., and Efros, A. A. (2017). Unpaired image-to-image

translation using cycle-consistent adversarial networks. In Proceedings of the IEEE

international conference on computer vision, pages 2223–2232.

	Introduction
	Structure

	Background
	Neuronal activities recordings
	Electrophysiological recording
	Calcium imaging recording

	Synthesising neuronal activities
	Maximum entropy method
	Dichotomized Gaussian method
	Deep generative model method

	Generative Adversarial Networks

	Methods
	CalciumGAN architecture
	Generator
	Discriminator

	CalciumGAN pipeline
	Spatial-temporal convolution
	Frequency-domain representation

	Results
	CalciumGAN model training
	Dichotomized Gaussian data
	Synthetic data mimicking dichotomized Gaussian data

	Two-photon calcium imaging recorded data
	Synthetic data mimicking recorded data
	Phase Shuffle
	Spatio-temporal convolution
	Frequency-domain data
	Untrained mice data

	Discussion
	Limitations
	Future Work

	Appendix
	CalciumGAN without Phase Shuffle
	CalciumGAN-2D
	CalciumGAN-2D FFT
	Untrained mice data

	Bibliography

