
Neuronal Learning Analysis using

Cycle-Consistent Adversarial Networks

Bryan M. Li

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Master of Science by Research

Institute for Adaptive and Neural Computation

School of Informatics

University of Edinburgh

2021

Abstract
Understanding how cortical responses reshape over the course of learning has been

the central theme of computational neuroscience. Thanks to the recent advances in

neural imaging technologies, experimentalists are able to obtain high-quality recordings

from hundreds of neurons over multiple days or even weeks. However, the complexity

and dimensionality of population responses pose significant challenges for analysis.

Existing methods of studying neuronal adaptation and learning often impose strong

assumptions on the data or model, resulting in biased descriptions that do not generalize.

In this work, we explore the use of a special type of deep generative model called

– cycle-consistent adversarial networks (CycleGAN) to learn the unknown mapping

between pre-learning and post-learning in vivo cellular activities. To do so, we develop a

framework to preprocess, train and evaluate calcium signals. We first test our framework

on a synthetic dataset with ground-truth transformation. Subsequently, we applied it to

neuronal activity from rodent visual cortex across different days that mice transition

from novice to expert-level performance on the experimental task. We compare our

model performance in both generated calcium imaging signals and their inferred spike

trains. To maximize the performance of our model, we derive a novel approach to

pre-sort neurons such that convolutional-based deep neural networks can take advantage

of the spatial information that exists in neuronal activities. In addition, we incorporate

a number of model visualization methods to improve the explainability of our work

and also gain insights into the learning process as manifested in the cellular activities.

Together, our results demonstrate that analyzing neuronal learning processes with the

data-driven deep unsupervised method holds tremendous potential.

i

Acknowledgements
My most sincere gratitude to my supervisors, Dr. Arno Onken and Dr. Nathalie

Rochefort, for their tireless guidance throughout this research project and my postgrad-

uate studies.

I thank Dr. Nina Kudryashova and Theoklitos Amvrosiadis for their assistance in

understanding the calcium imaging data and also their meaningful insights from the

neuroscience perspective.

I would like to thank Lazaros Mitskopoulos and Filippo Corponi for their ideas and

suggestions in improving this work.

In addition, I would like to thank the UKRI Biomedical AI CDT administration team.

For their effort in making sure this school year runs as smoothly as possible despite the

looming pandemic.

ii

Declaration
I declare that this thesis was composed by myself, that the work contained herein is my

own except where explicitly stated otherwise in the text, and that this work has not been

submitted for any other degree or professional qualification except as specified.

(Bryan M. Li)

iii

Table of Contents

1 Introduction 1
1.1 Structure . 3

2 Background 5
2.1 Neuronal activity recordings . 5

2.1.1 Animal experiment and data collection 6

2.2 Modelling neuronal activity . 6

2.3 Generative adversarial networks . 8

2.4 Cycle-consistent adversarial networks 10

2.5 Explainable deep neural networks 13

2.5.1 Features visualization . 14

2.5.2 Self-attention mechanism . 15

3 Methods 17
3.1 Model pipeline . 17

3.1.1 Data preprocessing . 17

3.1.2 Neuron spatial ordering . 18

3.1.3 Synthetic data . 19

3.1.4 Evaluation and metrics . 20

3.2 Networks objective and architecture 21

3.2.1 Generators . 21

3.2.2 Discriminators . 23

3.3 Implementation detail . 23

4 Results 27
4.1 Synthetic data . 27

4.2 Recorded data . 34

iv

4.2.1 Neuron spatial order . 42

5 Discussion 46
5.1 Limitations . 48

5.2 Future Work . 49

5.3 Conclusion . 50

A Appendix 51
A.1 Synthetic data experiment results . 52

A.2 Recorded data experiment results . 53

A.2.1 Spike statistic analysis . 55

A.2.2 Neuron spatial order . 59

Bibliography 63

v

Chapter 1

Introduction

One of the main objectives in computational neuroscience is to study the dynamics

of neural processing and how neural activity reshape in the course of learning. One

major hurdle was the difficulty in obtaining high-quality neural recordings of the

same set of neurons across multiple experiments, though such limitation in recording

techniques has seen tremendous improvements in recent years. Nevertheless, strong

assumptions in the data or experiment are often required in order to analyze the high-

dimensional neuronal activity recordings. Therefore, a data-driven method to interpret

the circuit dynamics in learning is highly desirable. Moreover, understanding the

learning process in the brain can also provide meaningful insights into other fields

such as health science and machine learning. For instance, it would allow medical

practitioners to monitor changes in cortical function for a given drug hence providing

better treatment for pathologies that are associated with learning deficits [12, 106].

Moreover, despite the rapid development in deep learning in recent years, most artificial

neural networks (ANNs) require a tremendous amount of data to learn from and often

generalize poorly for unseen data [27]. Zero-shot and one-shot learning are areas that

attempt to address the said issue, though, these methods are still quite far from human

learning capabilities [6, 115, 117, 129].

With the advent of modern neural imaging technologies, it is now possible to monitor

a large population of neurons over days or even weeks [104, 120], thus allowing

practitioners to obtain in vivo recordings from the same set of neurons across different

learning stages. Substantial effort has been put into extracting interpretable and unbiased

descriptions of how cortical responses improve due to experience. Churchland et al.

1

Chapter 1. Introduction 2

[20] analyzed the per-trial firing rate from the motor cortex recordings to learn a latent

representation of the neural dynamics over multiple trials. Driscoll et al. [28] used

a generalized linear model to model the relationship between neuronal activity and

the behaviour task. Williams et al. [121] applied tensor component analysis (TCA)

in multi-timescale recordings to identify a set of low-dimensional factors that can

describe within-trial dynamics as well as across-trial structure. Nevertheless, many of

these methods have strong assumptions in the modelling technique or the data, such as

the linearity assumption in TCA. Therefore, making sense of the unknown mapping

between pre-learning and post-learning neural activity remains a significant challenge.

Thanks to their ability to self-identity and self-learn features from complex data, deep

neural networks (DNNs) have seen tremendous success in many biomedical applica-

tions [11, 73, 88, 127]. Specifically, deep generative networks have shown promising

results in analyzing and synthesizing neuronal activities in recent years. Pandarinath

et al. [83] developed a variational autoencoder (VAE) to learn latent dynamics from

single-trial spiking activities and Prince et al. [89] extended the framework work with

calcium imaging data. Molano-Mazon et al. [75] demonstrated that generative adver-

sarial networks (GANs) can synthesize binary spike trains from a small number of

neurons in the salamander retina and match the low-level statistics of spiking activities

observed in the recorded data. Li et al. [62] proposed a GAN framework that models

the continuous calcium fluorescent signals instead of binary spike trains. They fitted the

model with over a hundred neurons from the primary visual cortex and showed that the

generate samples that resembled the underlying distributions of the recorded data.

Furthermore, when using these generative models in certain combinations, it is even

possible to learn the transformation between two otherwise unpaired distributions [55,

125, 132]. Cycle-consistent adversarial networks (CycleGAN [132]), which utilize two

GANs in conjunction to learn the mapping between two unaligned domains via cycle

consistency, is one such prominent unsupervised method. The CycleGAN framework

was originally designed for unsupervised image-to-image translation though it has been

extended to other domains, such as natural language translation [34] and molecular

optimization [71].

In this work, we explore the use of cycle-consistent adversarial networks to learn

the unknown mapping between pre-learning and post-learning neuronal activities. In

other words, given the neural recordings of a novice animal, can we translate the

neuronal activities that correspond to the animal with expert-level performance and

Chapter 1. Introduction 3

vice versa? To this end, we derive a standardized procedure to train, evaluate and

interpret the CycleGAN framework. To improve the explainability of our work, we

employ the feature-importance visualization method – GradCAM [98] to interpret the

learned features by the deep neural networks. In addition, we have introduced a ResNet-

based [43] self-attention architecture – AGResNet. The self-attention mechanism allows

the network to self-adjust its level of “attention” at different latent dimensions in the

model. Such formulation has two key benefits: 1) improve model performance; 2) allow

direct inspection of where and what the model deemed important w.r.t the input. To

quantify the capability of the unsupervised learning method, we evaluate our method

on two datasets: 1) an artificially constructed dataset with a known transformation

between two distributions, and 2) recordings obtained from the primary visual cortex of

a behaving animal across multiple days. We then compare several metrics and statistics

between the generated and recorded data in calcium imaging traces and inferred spike

trains.

1.1 Structure

Chapter 2 introduces the necessary background information for this work. Section 2.1

briefly discusses various neuronal activities techniques and then details the data and

its collection process used in this work. Section 2.2 provides an overview of common

techniques in modelling neuronal activities. Section 2.3 discusses generative adversarial

networks (GANs) and its variations, and Section 2.4 details the cycle-consistent adver-

sarial networks framework. Section 2.5 highlights some of the recent advancement in

deep neural networks interpretation.

Next, we detail the methodology and evaluation framework of our work in Chapter 3.

Section 3.1 outlines the entire pipeline of our framework, including data preprocessing,

data augmentation, visualization and evaluation methods. Section 3.2 details the opti-

mization objectives and DNNs architectures. Followed by the software implementation

detail in Section 3.3.

In Chapter 4, we first present the results based on synthetic data with known ground-

truth, in which we also provide a detailed analysis of the learned features from the model.

We also compare different training objective formulations and model architectures. Then

in Section 4.2, we demonstrate that our framework also works with recorded neuronal

activities by evaluating the generated calcium fluorescent signals and their inferred

Chapter 1. Introduction 4

spike trains. Moreover, we employ a set of model visualization methods to interpret the

learned features by the models.

Finally, Chapter 5 provides a summary of this work, including its contribution to

the deep learning and computational neuroscience communities. We also discuss the

limitations of our approach to the problem and propose various future research directions

that consolidate cycle-consistent adversarial networks and neuronal learning analysis.

Chapter 2

Background

2.1 Neuronal activity recordings

Biological neurons propagate signals by means of electrochemical pulses (spikes) and

are interconnected in large complex circuits that produce population responses with

intricate structure [23, 46, 87]. Therefore, the ability to record these action potentials

or spikes accurately is essential in understanding the neural information processing

system. Electrophysiological recordings and calcium imaging are two popular recording

techniques that enable enable recording neuronal activities from dozens to tens of

thousands of neurons simultaneously [10, 51].

Large scale electrophysiology measures electrical current from the extracellular space,

then spike trains from individual neurons can be extracted via spike sorting [13, 91].

This recording technique produces recording with high temporal resolution and is

considered as the most accurate method to monitor spike activities [23, 91]. On the

other hand, calcium imaging measures the calcium influx during the depolarization

process as a proxy for an action potential activity [7, 95]. However, since calcium

imaging is an indirect measurement of spiking activity, thus a transformation to convert

calcium fluorescence signal to spiking activity is needed, and such deconvolution

process remains a challenging task [119]. Nevertheless, this non-invasive recording

technique enables practitioners to monitor a large population of neurons simultaneously

and has seen rapid adoption in animal experiments in recent years [45, 81, 105, 119].

5

Chapter 2. Background 6

2.1.1 Animal experiment and data collection

In this section, we briefly describe the virtual reality experiment setup employed to

collect the calcium imaging data used in this work, which follows the same procedure

as specified in Pakan et al. [81] and Henschke et al. [45].

Figure 2.1a illustrates the mouse virtual-corridor experiment setup. A head-fixed mouse

was placed on a linear treadmill that allows the mouse to move forward and backward

freely in virtual space while recording their virtual location and speed. A lick spout

and two monitors were placed in front of the treadmill and a virtual corridor with

defined grating pattern was shown to the mouse. A reward (water drop) would be made

available if the mouse lick within the predefined reward location, in which the grating

pattern disappears as a virtual clue. Hence the mouse should learn to utilize both visual

information and self-motion feedback to maximize reward. Reward zones were set to

be between 120cm to 140cm from the initial start point, and each trial would reset at

160cm regardless of the performance of the mouse.

The genetically encoded calcium indicator GCaMP6 was used to label the same set of

102 neurons in the primary visual cortex, the relative changes in fluorescence (∆F/F0)

over time were used as a proxy for an action potential. The neuron location and

annotation order are shown in Figure 2.1b. Note that neurons were not annotated in

a particular order, though the order displayed here indicates the row number of each

neuron in the calcium signals data matrix (i.e. the first annotated neuron occupies row

0 in the data matrix, the second annotated neuron occupies row 1 in the data matrix

and so on). Table 2.1 shows the basic statistics and information about the virtual-

environment experiment. As the experiment progress, the number of licks by the mouse

decreases while the total reward increases, suggesting that the mouse is learning the

precise location to lick and maximizing its rewards. By the fourth day, the mouse

was able to achieve success rate of > 75% and can be considered as “expert” at the

task [81]. Hence, this dataset provides us with excellent insight into the change in

neural population dynamics of the behaving mouse over different learning phrases.

2.2 Modelling neuronal activity

The ability to model realistic neuronal activity can provide us better insight in under-

standing the neural coding process. Numerous modelling techniques have been proposed

throughout the years, ranging from maximum entropy models to deep generative models.

Chapter 2. Background 7

Ca 2+ imaging

(a) Animal experiment illustration

1
2 3

4
56

7
8

9

10
11

12

13
14

15

16 17 18

19
20

21

22

2324

25

26

27

28

29

30

31
32

33

34

35
36

37
38

39

40
41 42

43

4445

46 47
48

4950

51

5253

54

55

56

57
58

59

60

61

62
63

64

65

66

67

68

69
70

71

72

73

74
75

76
77

78

79

80

81

82

83 84

85

86

87

88

89

90 91

92

93

94

95 96
97

98

99

100

101

102

(b) X and Y original annotation order

Figure 2.1: (a) Illustration of the mouse virtual-environment setup. A defined grating

pattern is displayed on the monitors and the mouse can move forward and backward

in the virtual-corridor. When the mouse approaches the reward zone, which was set

at 120cm to 140cm from the initial start point, the grating pattern would disappear and

replaced with blank screen. If the mouse lick within the virtual reward zone, then a

droplet of water would be given to the mouse as a reward. Trials reset at 160cm. The

figure is based on Figure 1 in Pakan et al. [81]. (b) original coordinates and annotation

order of the 102 recorded neurons. i.e. neuron #1 here would be at index 0 in the data

matrix, and neuron #65 would be at index 64. Neurons followed the same order across

all experiments.

Here, we briefly highlight some popular neuronal modelling methods.

Spiking activities can be modelled as probability distributions with specific constraints

under the Maximum Entropy principle (MaxEnt). Firing rate and pairwise correlations

in neurons are two commonly used constraints to define the probability distributions [32,

97, 100]. The MaxEnt method has shown excellent results in modelling spiking activities

of a small number of neurons. However, it does not scale well in high dimensional space

as the number of states can grow exponentially w.r.t to the size of the population [107].

To address the computational limitation, Macke et al. [68] proposed the Dichotomized

Gaussian (DG) model. The DG model simulates population activity by sampling from

a multivariate normal distribution with specified mean and variance, then thresholded to

generate binary spike trains.

Chapter 2. Background 8

DAY NUM. TRIALS AVG. DURATION LICKS REWARDS

1 129 6.94S 2813 140

2 177 5.08S 2364 182

3 192 4.67S 2217 198

4 203 4.43S 1671 213

Table 2.1: Basic information about the animal experiment across 4 days, including the

number of trials, average duration of each trial, total number of licks and the total reward

received by the mouse. The mouse achieved “expert” level by day 4 where it had a

success rate of > 75% at the task. All data were recorded at a sampling rate of 24Hz.

Note that the same mouse was used in the experiment.

Another popular approach is to model underlying population dynamics with latent

variable models [31]. Common dimensionality reduction techniques such as factor

analysis (FA) and principal component analysis (PCA) have shown success in modelling

linear dependencies in latent states [20, 78]. Moreover, deep learning methods have

proved to be a capable method to model non-linear dynamics [29, 83, 99]. Notably,

Pandarinath et al. [83] introduced a variational autoencoder (VAE) framework that

learns the non-linear latent dynamics in spiking activity with recurrent neural networks

(RNNs).

Recently, the use of deep generative models to synthesize neuronal activities has gained

significant interests thanks to their data-driven approach. Molano-Mazon et al. [75]

demonstrated that generative adversarial networks (GANs, detailed in Section 2.3) can

accurately generate spiking activity that matches the low-level statistics of a small

number of neurons recorded from the salamander retina. In our previous work [62],

we derived a GANs framework to synthesize fluorescent calcium signals from over a

hundred neurons in the primary visual cortex and showed that our method was able to

model the first and second-order statistics substantially better than the DG model.

2.3 Generative adversarial networks

Generative adversarial networks (GANs), first introduced in Goodfellow et al. [38],

is an unsupervised method that learn to generate compelling samples to mimic a

real data distribution via adversarial training. GANs has seen rapid adoption across

Chapter 2. Background 9

many fields since its introduction, including data synthesis [9, 26, 53], visual super-

resolution [61, 131], and many more [86, 122, 128].

A typical GANs consists of a generator G and a discriminator D. The generator G : Z→
X samples noise from probability distribution Z (usually Gaussian distribution), and

learns to generate sample x̂ = G(z) that resemble data from the real data distribution X .

Whereas the discriminator attempts to distinguish generated samples X̂ from real

samples. The discriminator in the original proposed GANs framework [38] acts like a

logistic classifier with the following loss function:

LGAN
D =− E

x∼X
[logD(x)]− E

z∼Z
[log(1−D(G(z)))] (2.1)

And the objective of the generator is to simply maximize the loss of the discrimina-

tor LGAN
G = E

z∼Z
[log(1−D(G(z))]. However, the objective of minimizing the Jensen-

Shannon distance is notoriously difficult to train. The minimax formulation is prone

to model collapse, where the generator can simplify its task by simply generating a

particular subset of data instead of learning the true data distribution [16]. It is also

possible that the discriminator overpowers the generator in the early phase of training

causes a vanishing gradient for the generator [36, 82]. Since the introduction of GANs,

there has been a tremendous amount of work that aims to address the said issues, here

we highlight some of the popular proposed solutions.

Mao et al. [70] proposed the use of least-square loss in the discriminator loss calculation

instead, in which the authors showed that such formulation minimize the Pearson X 2

divergence implicitly:

LLSGAN
D =− E

x∼X
[(D(x)−1)2]+ E

z∼Z
[D(G(z))2] (2.2)

LLSGAN
G =− E

z∼Z
[(D(G(z)−1)2] (2.3)

Wasserstein GAN (WGAN) [5] proposed to minimize the continuous earth mover’s

distance (also known as the Wasserstein distance), in which the discriminator D : X→R
serves as a value function instead and that it has to be a 1-Lipschitz function. In order

to enforce the Lipschitz condition on the discriminator, weights in the discriminator

are restricted to be within [−c,c] where c is a hyper-parameter. Gulrajani et al. [41]

further improved the method with WGANGP, which enforce the Lipschitz condition

via gradient penalty instead of weight-clipping. The authors take advantage of the fact

that a differentiable function is 1-Lipschitz if the norm of the gradient is 1, hence they

Chapter 2. Background 10

introduced a regularization term that penalize the discriminator when its gradient norm

is not 1:

LWGANGP
D = E

z∼Z
[D(G(z))]− E

x∼X
[D(x)]

+λGP E
x∼X ,z∼Z

[(‖ ∇D(εx+(1− ε)G(z)) ‖2 −1)2] (2.4)

LWGANGP
G =− E

z∼Z
[D(G(z))] (2.5)

where λGP is the gradient penalty coefficient hyper-parameter, and ε is a 0-to-1 linear

interpolation coefficient sampled from a uniform distribution. Since the discriminator

objective in WGANGP is more complicated, the authors proposed that the discriminator

can be updated multiple steps for every generator step.

Kodali et al. [58] pointed out that the interpolation term εGPx+(1−εGP)G(z) is problem-

atic due the fact that G(z) could be very far away from the true distribution, especially

in the early training phase. The authors suggested that noise can be added to the true

sample, instead of sampling a random point G(z), hence resulting in a point that is

"close" to the true data distribution:

LDRAGAN
D = LGAN

D +λGP E
x∼X ,z∼N (0,c))

[(‖ ∇D(x+ z) ‖2 −1)2] (2.6)

LDRAGAN
G = E

z∼Z
[log(1−D(G(z)))] (2.7)

where c a hyper-parameter for the Gaussian distribution.

Nevertheless, the GANs objective function formulation is still an active area of research,

with new frameworks being introduced frequently. Numerous empirical studies on

GANs show that each method has its benefits and drawbacks, and many nuances remain

in training GANs effectively [36, 59, 66, 85, 96].

2.4 Cycle-consistent adversarial networks

In the vanilla GANs framework, the generator learns to synthesize data that resemble

a certain data distribution, though with no control over which domain within the

distribution to generate. For instance, we cannot specify vanilla GANs, trained on

images of dogs, to generate images of Bulldog specifically. To address this limitation,

Mirza and Osindero [74] introduced Conditional GANs (cGANs) where the generator

and discriminator also consider the class label, hence allowing the model to generate

class-specific samples.

Chapter 2. Background 11

Suppose we want to perform a translation task, such as French-to-English translation.

We can train a vanilla GANs where the generator inputs a French sentence and outputs a

corresponding English sentence, and the discriminator learns to distinguish real English

sentences from generated ones. Given an input French sentence “comment ça va”, (one

of) the correct translation “how are you” and incorrect translation “I go to school by bus”

would receive similar scores from the discriminator, as both are valid English sentences.

Hence, GANs or cGANs alone are inadequate in tackling this scenario. Similarly, if we

attempt to train a GANs to learn the transformation of the neuronal activities between

two different experiment sessions, we too cannot verify that the generated sample is

a direct correspondence of the input. Moreover, unlike natural languages, it would be

very challenging to obtain paired recording samples from behaving animal experiments,

if not impossible. Interestingly, it is possible to learn the mapping between two unpaired

distributions with multiple GANs working in conjunction. Here, we outline one such

powerful unsupervised learning method.

(a)

cycle consistent loss

(b)

Figure 2.2: Illustration of (a) the data flow and (b) the cycle-consistent loss in a forward

cycle X → Y → X . Illustration re-created from Figure 3 in Zhu et al. [132]. G and F

are generators that learn the transformation of X → Y and Y → X respectively. We first

sample x∼ X , then apply transformation G to obtain ŷ = G(x). To ensure ŷ resemble

distribution Y , we train discriminator DY to distinguish generated samples from real

samples. However, even if ŷ is of distribution Y , we cannot verify that ŷ is the direct

correspondent of x. Hence, we apply transformation F which convert x̄ = G(ŷ) back to

domain X . If both F and G are reasonable transformations, then the cycle-consistency

|x− x̄| should be minimal. The backward cycle Y → X → X is a mirrored but opposite

operation that run concurrently with the forward cycle.

CycleGAN [132] learns the mapping between unpaired distributions X and Y with two

generators: G : X → Y and F : Y → X , and two discriminators DX : X → [0,1] and

Chapter 2. Background 12

DY : Y → [0,1]. We sample x from distribution X and apply transformation G to obtain

ŷ = G(x). Then to verify ŷ resemble distribution Y , we can use DY (ŷ) to discriminate

it. The procedure thus far is very similar to a typical GANs, with the exception that

we sample X instead of noise Z. However, as discussed previously, there is no direct

way to ensure ŷ corresponds to x. Ingeniously, the authors suggested that we could

apply transformation F to ŷ to obtain x̄ = F(ŷ). If both G and F transformations are

sufficiently good, then ‖ x− x̄ ‖ should be minimal. The authors called this different in

cycle reconstruction the cycle-consistent loss. Notice that it is possible for G and F to

obtain a good cycle-consistent loss while having a poor intermediate step representation

ŷ = G(x). For instance, if G and F are identity functions, then the cycle-consistent

loss would always be zero. To mitigate this issue, the authors proposed that we should

train both forward cycle X → Y → X and backward cycle Y → X → Y concurrently.

The discriminators DX and DY should discourage the possibility of ŷ = G(x) and

x̂ = F(y) being identical to x and y by having a low discriminator score. Moreover, the

cycle adversarial training procedure should minimize the likelihood of ŷ and x̂ being

completely unrelated to x and y, nevertheless, it is still possible. Figure 2.2 illustrates

the forward cycle step X → Y → X .

Here, we formalize the objective functions of the 4 networks in CycleGAN, which are

based on the LSGAN formulation. The discriminators follows the same formulation as

to Equation 2.2:

LCycleGAN
DX

=− E
x∼X

[(D(x)−1)2]+ E
y∼Y

[DX(F(y))2]

LCycleGAN
DY

=− E
y∼Y

[(D(y)−1)2]+ E
x∼X

[DY (G(x))2] (2.8)

The objective functions for the generators are similar to Equation 2.3:

LCycleGAN
G =− E

x∼X
[(DY (G(x)−1)2]

LCycleGAN
F =− E

y∼Y
[(DX(F(y)−1)2]

In addition, the forward and background cycle-consistent loss:

LCycleGAN
cycle = E

x∼X
[‖ x−F(G(x)) ‖]+ E

y∼Y
[‖ y−G(F(y)) ‖]

In addition, when x ∼ X is provided to F : Y → X , then the generated sample x̂ =

F(x) = x should still be of distribution X , thus the authors formulate the identity loss

Chapter 2. Background 13

Lidentity:

LCycleGAN
G identity = E

y∼Y
[‖ y−G(y) ‖]

LCycleGAN
F identity = E

x∼X
[‖ x−F(x) ‖]

The mean absolute error was used as the distance function for both Lcycle and Lidentity,

though other common distance functions can also be used, such as mean-squared error

or Huber loss. Taken together, the final objective functions for the generators are as

follows:

LCycleGAN
total G = LCycleGAN

G +λ cycleLCycleGAN
cycle +λidentityLCycleGAN

G identity

LCycleGAN
total F = LCycleGAN

F +λ cycleLCycleGAN
cycle +λidentityLCycleGAN

F identity (2.9)

where λ cycle and λidentity are the cycle-consistency loss and identity loss coefficient

hyper-parameters respectively. Note that some popular CycleGAN implementations

only include half the cycle-consistent loss in total generator loss [77], i.e. LCycleGAN
total G =

LCycleGAN
G +λ cycle E

y∼Y
[‖ y−G(F(y)) ‖]+λidentityLCycleGAN

G identity , though the original formu-

lation performed better in our experiment on the horse-to-zebra dataset and we are not

using this alteration in this work.

In essence, CycleGAN relies on the cycle-consistency of F(G(x))= x̄≈ x and G(F(y))=

ȳ ≈ y to learn the mapping between the two otherwise unaligned distributions. Re-

lating back to the French-to-English translation example, a sentence that translates

from French-to-English and back from English-to-French, albeit not guaranteed, should

be identical to the original phrase when trained with the cycle-consistent objective.

Since the introduction of CycleGAN, this powerful unsupervised learning framework

has shown success in other fields and disciplines, such as CT-to-MR scan transla-

tion [21, 123], cryptanalysis [34] and many more [18, 71, 109].

In this work, we adapt the CycleGAN framework, in combination with some of the

GANs objective formulations mentioned in Section 2.3, to learn the unknown mapping

between pre-learning and post-learning neuronal activities recorded from the animal

experiments detailed in Section 2.1.1.

2.5 Explainable deep neural networks

Deep neural networks (DNNs) have outperformed many classical machine learning

algorithms in a wide variety of tasks in no small part due to their ability to self-identify

Chapter 2. Background 14

implicit patterns in data [37, 60, 64]. Nevertheless, such a powerful self-learning

mechanism could be a double-edged sword. For instance, Makino et al. [69] showed

that DNNs would learn different features relative to those identified by radiologists,

where some of these self-identified features could be spurious (to our knowledge), while

others present new potential insights to the task. The uninterpretable nature of DNNs is

problematic and risky in some fields, such as healthcare and biomedical science, where

it is crucial that medical practitioners can understand and verify the learned features

by the algorithm before making any life-dependent decisions. Therefore, the machine

learning community has put significant efforts into improving the explainability of

DNNs in recent years [30].

With respect to this work, we would like to interpret the learned features by the gen-

erators and discriminators. First, we would like to ensure the 4 networks are learning

reasonable features from the neuroscience perspective, instead of something trivial.

Second, the self-identified patterns by the networks could provide us better insight into

the neuronal learning process. For instance, perhaps there exists a particular set of

neurons or periods in the trial that is highly influential in the learning process, thus

allow experimentalists to pay more attention to those areas. Here, we highlight some

popular methods that can improve the interpretability in convolutional neural networks

(CNNs).

2.5.1 Features visualization

As the vast majority of DNNs are trained with gradient descent, one popular approach

to visualize what is learned by the deep learning model is the gradient-based approach.

In a CNN image classifier, we can measure the gradient of each class w.r.t individual

pixels in the input image as an indication of how each pixel influences the prediction.

Simonyan et al. [101] proposed to visualize pixels of interest in the form of saliency

maps. For an input image I, the saliency map at image location I0 can be computed

as Msaliency = ∂Sc
∂I

∣∣∣
I0

where Sc is the class score function (which compute the logits

prior to the softmax output) for each class c. Smilkov et al. [103] further improved

the method by averaging the gradients of multiple images from the same distribution,

as well as adding Gaussian noise to the images, to generate a smoother saliency map.

However, saliency map can be affected by common data pre-possessing operations such

as normalization and standardization [33, 56], hence a more robust solution is needed.

Class Activation Map (CAM) [130] has become a very popular alternative to visualize

Chapter 2. Background 15

CNN activation. Instead of the typical approach of using fully connected layers to

down-sample the features maps from the last convolutional layers to the output softmax

layer, the authors proposed to use the Global Average Pooling (GAP) layer followed

by a linear layer instead. More formally, let fk(i, j) be the feature maps of the last

convolutional layer at location (i, j) with depth k, then the class score function can be

defined as Sc = ∑k[wc
k ∑i, j fk(i, j)] where the inner summation is the GAP layer. With

this architecture, the learned wc
k can be interpreted as the relevancy of each feature

map toward a specific class c, hence can be projected back to the input to highlight

the important regions. The CAM of each class is therefore the weighted sum of the

corresponding feature maps Mc
CAM(i, j) = ∑k wc

k fk(i, j). This approach does not require

computing the gradient w.r.t the input hence is more robust and efficient, though CAM

is not very versatile as it requires architecture change. Selvaraju et al. [98] suggested

that the importance weight wc
k could be estimated instead, hence allowing their method

– GradCAM to work with any CNN architecture. The importance score αc
k can be

computed as the GAP of the gradient of logits yc w.r.t feature maps fk(i, j):

α
c
k =

1
Z ∑

i
∑

j
− ∂yc

∂ fk(i, j)
(2.10)

Then the CAM can be computed as

Mc
GradCAM(i, j) = ReLU(∑

k
α

c
k ∗ fk(i, j)) (2.11)

ReLU non-linearity was added to remove features that influence the class of interest

negatively. Thanks to its simplicity and generalizability, GradCAM has become a

popular method to visualize and understand the area of interested learned by any CNN

models.

2.5.2 Self-attention mechanism

Feature-importance methods such as saliency map and GradCAM allow practitioners to

interpret what the algorithm has learned yet they do not improve the model performance.

With the introduction of Transformer [114], which relies on attention modules instead

of the transitional long-short term memory (LSTM) layer, attention-based models have

dominated many natural language processing tasks, ranging from language translation

to text generation [22, 25, 90, 124]. The Multi-Head Attention module Transformer uses

a dictionary-like layer that store key-value pairs of the input sequence, then the model

attempts learn the relationship between each word in a sentence. Such formulation works

Chapter 2. Background 16

very well with data that consists of temporal dependencies, such as natural language.

However, the attention mechanism in language models does not work well with data that

has a high dimensional spatial dependency, such as images. Nevertheless, one can see

the attraction of the self-attention mechanism. On one hand, it can improve the model

performance while decreasing the computation cost (in the case of language modelling).

On the other hand, the learned attention units can improve the interpretability of the

model. A great number of self-attention mechanisms have been introduced to work

with CNNs in recent years, here we briefly discuss the method we are using.

Trainable attention in CNNs can be separated into two main categories [15]. Hard

attention – a stochastic approach where patches of the image are exposed to the network

which allows the model to focus better, yet, there is a chance that the selected patches

are not of importance. Soft attention – a deterministic approach in which an attention

mask is learned for the entire input image, though the attention learned is often more

coarse-grained. Jetley et al. [52] introduced a soft-attention module into the VGG

classifier [102], where the module learns an [0,1] attention mask from local and global

features, then apply the mask over the output from the previous layer, and it saw

significant improvement in various image classification tasks. These soft-attention

modules enable easy integration into existing CNNs architectures while improving the

explainability and the performance of the learning algorithm.

Chapter 3

Methods

3.1 Model pipeline

We are interested in whether or not the CycleGAN unsupervised learning framework

can learn the mapping between pre-learning and post-learning neuronal activities. If so,

can we interpret what the generators and discriminators deem relevant in the cellular

activities during their transformation operations? Therefore, we devise a consistent

analysis framework, including data preprocessing and augmentation, model tuning and

interpretation, and evaluation of the generated calcium fluorescent signals and their

inferred spike trains. Figure 3.1 illustrates the complete pipeline of our work1.

3.1.1 Data preprocessing

As discussed in Section 2.1.1, the mouse achieved expert-level performance in the

virtual-environment task by the fourth day of the experiment, a sharp contrast to the

inexperienced performance exhibited on the first day when the mouse was new to the

experiment. Hence, we denote the pre-learning and post-learning activities to be X

and Y , which are random variables that represent recordings obtained from the first

and the fourth day. As shown in Table 2.1, W = 120 neurons from the primary visual

cortex were monitored at a sampling rate of 24Hz, as well as trial-per-trial information

including the virtual distance, licks and rewards. In total, 21471 and 21556 calcium

imaging samples were recorded on day 1 and 4 respectively (i.e. data with shape

1The software codebase of this work is attached in the dissertation submission and will be made
publicly available upon publication.

17

Chapter 3. Methods 18

(21471,102) and (21556,102)). As we are interested in whether or not the generators

and discriminators can identify patterns relevant to the animal experiment purely based

on the cellular activities thus we do not want to incorporate any trial information into

the training data. We first segment the two datasets with a sliding window of size

H = 2048 along the temporal dimension, resulting in data with shape (N,H,W) for X

and Y where N is the total number of segments. Note that a segment length of H = 2048

time-steps is ∼ 85 seconds of wall time. We then normalize each set to range [0,1], for

instance, we normalize X by X = X−Xmin
Xmax−Xmin

where Xmin and Xmax are the minimize and

maximum value in X . In order to take advantage of the spatial-temporal information in

the neuronal activities with 2-dimensional convolutional layers, we further convert the

two sets to have shape (N,H,W,C) where C = 1. We then divide the two datasets into

train, validation and test set with 3038, 200 and 200 samples respectively.

3.1.2 Neuron spatial ordering

CNNs with a smaller kernel can often perform as well or even better than models with a

larger kernel while having less trainable parameters [43, 63]. Nevertheless, kernel size

is often proportional to the network’s receptive field, the region in the input that the

convolutional layer can learn from [3]. Such property is negligible with most image-

based tasks, as images usually have localized spatial relations where a pixel is likely

to be high-correlated with its surrounding pixels though not pixels far away [42, 65].

However, as mentioned in Section 2.1.1, the neuron annotations in our datasets are not

ordered in a particular manner, rather than grouping neurons that are high-correlated,

thus the limited receptive field could restrict the networks from learning meaningful

spatial-temporal information.

To mitigate the said issue, we derive a procedure to pre-sort both X and Y , such that

neurons that are highly correlated or relevant are closer in space. A naive approach is

to sort the neurons by their firing rate, where the neuron with the highest firing rate is

ranked first in the data matrix. However, it is possible that not all high-firing neurons are

the most relevant in the population, therefore, we also explore a data-driven approach.

Deep autoencoders have shown excellent results in feature extraction and representation

learning [35, 111, 116], and we can take advantage of its unsupervised feature learning

ability.

We develop two deep autoencoder models AEX(x) and AEY (y) where each model learns

to reconstruct X and Y respectively. Each model has 3 convolution down-sampling

Chapter 3. Methods 19

blocks, follows by a bottleneck layer, then 3 transposed-convolution up-sampling blocks

such that the reconstruction has the same dimension as the inputs. The down-sampling

block consists of a convolution layer followed by Instance Normalization [112], Leaky

ReLU (LReLU) activation [67] and Spatial Dropout [110], whereas a deconvolution

layer is used in the up-sampling block instead. We first train the two models using

the mean-squared error as the reconstruction objective, then we use the reconstruction

error on the test sets to sort the neurons (in ascending order) in X and Y . Once we have

the neuron orders for X and Y , we sort the input data in the data preprocessing step as

shown in Figure 3.1.

3.1.3 Synthetic data

CycleGAN [132] was first introduced for image-to-image translation (see Section 2.4),

albeit the two distributions are not aligned hence we cannot use common distance

metrics to compare ‖ x−F(y) ‖ and ‖ y−G(x) ‖, one could still visually inspect

whether or not x̂ = F(y) and ŷ = G(x) are reasonable transformations. However, it

would be difficult to visually inspect the same transformations F(y) and G(x) on

neuronal activities, and one could only rely on the reconstruction loss ‖ x−F(G(x)) ‖
and ‖ y−G(F(y)) ‖.

To improve this situation, we introduce an additional dataset Y = Φ(X) with a known

transformation Φ, such that G : X → Y = Φ(X) and F : Y = Φ(X)→ X , then we could

verify G(x) = ŷ = Φ(x) and F(y) = x̂ = Φ′(y), where Φ′ is the inverse transformation.

To this end, we defined the transformation Φ as:

Φ(x) = mdiagonal× x+0.5η η∼N (µx,σ
2
x)

where µx and σx are the neuron-wise mean and standard deviation of X , whereas

mdiagonal is a diagonal mask to zero-out the lower left corners of the signals. This spa-

tiotemporal transformation is chosen because it allows us to interpret and visualize the

generated samples easily. Figure 3.2 shows an example of before and after augmenting

X . Importantly, we shuffle the train set after the augmentation procedure so that X and

Y appears to be unpaired to the model. However, we do not shuffle the test set, so that

we can directly compare ‖ X−F(Y) ‖ and ‖ Y −G(X) ‖.

Keep in mind that in the scenario where we wish to take advantage of neuron spa-

tial ordering discussed above, we would first sort the neurons in X as described in

Section 3.1.2 then apply the augmentation to the sorted X .

Chapter 3. Methods 20

0 21 42 64 85
Time (s)

0

25

50

75

101

N
eu

ro
n

x

0 21 42 64 85
Time (s)

Y = (x)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3.2: (left) original x and (right) augmented Φ(x) calcium traces. Note that the

calcium traces here were normalized to [0,1] as part of the preprocessing.

3.1.4 Evaluation and metrics

To evaluate the generated results of G and F , we first directly evaluate the cycle-

consistent loss of the ‖ x−F(G(x)) ‖ and ‖ y−G(F(y)) ‖. We also compare ‖ x−F(x) ‖
and ‖ y−G(y) ‖ as we expect that the generators should not modify the input if it is

already in its target distribution. We then evaluate our model performance in terms of

spike activities of the of following distribution combinations: X |F(G(X)), Y |G(F(Y)),

X | F(X) and Y | G(Y). In this work, we use the deep learning based deconvolution

algorithm – Cascade [94] to infer spike trains from the recorded and generated calcium

signals. Since we inferred the spike trains from both generated and recorded data with

the same algorithm, the bias in the deconvolution method should apply to all data.

We measure spike train similarities and statistics with the following commonly used

metrics: (a) mean firing rate for evaluating single neuron statistics; (b) pairwise Pearson

correlation for evaluating pairwise statistics; (c) pairwise van Rossum distance [93]

for evaluating general spike train similarity. We evaluate these quantities across the

whole population for each neuron or neuron pair and each short time interval (100 ms)

and compare the resulting distributions over these quantities obtained from training

data as well as generated data. We, therefore, validate the whole spatial-temporal

first and second-order statistics as well as general spike train similarities. We use

the Electrophysiology Analysis Toolkit [24] to implement most of the spike analysis

methods.

As discussed in Section 2.5, there has been a significant advancement in interpretable

artificial intelligence, and we employ some of the mentioned methods in this work.

We incorporate a self-attention module in the generator which would allow us to

visualize the learned attention mask at different latent dimensions, we further detail the

Chapter 3. Methods 21

generator architecture in Section 3.2.1. In addition, we generate localization maps via

GradCAM [98] to visualize regions or neurons that each model concentrates on. On

top of allowing machine learning practitioners to visualize and verify the networks are

learning meaningful features, both feature-importance and self-attention methods can

also provide experimentalists insights into relevant neurons and patterns in the animal’s

learning process.

3.2 Networks objective and architecture

Following the CycleGAN [132] framework (see Section 2.4), we employ two generators

G and F , and two discriminators DX and DY to learn mapping between X day 1 and

Y day 4 recorded data (or Y = Xaugmented when trained with the synthetic dataset). As

discussed in Section 2.3, there are numerous objective formulation in GANs, each with

their own advantage and disadvantage. Hence, in addition to the LSGAN [70] objective

which was also used in CycleGAN, specified in Equation 2.8 and 2.9, we also adapted

WGANGP [5] and DRAGAN [58] into the loss calculation. To train CycleGAN with

the WGANGP objective, we can define the forward cycle loss function for discriminator

DY and generator G as:

LCycleWGANGP
DY

= E
x∼X

[DY (G(x))]− E
y∼Y

[DY (y)]

+λGP E
x∼X ,y∼Y

[(‖ ∇D(εy+(1− ε)G(x)) ‖2 −1)2]

LCycleWGANGP
G =− E

x∼X
[DY (G(x))]

We can modify the CycleGAN framework with DRAGAN objective as follows:

LCycleDRAGAN
DY

=LGAN
DY

+λGP E
y∼Y,z∼N (0,c)

[(‖ ∇D(y+ z) ‖2 −1)2]

LCycleDRAGAN
G = E

x∼X
[log(1−DY (G(x)))]

Note that we still add the cycle-consistent loss LCycleGAN
cycle and identity loss LCycleGAN

identity

to compute the total generator loss.

3.2.1 Generators

The generator architecture used in this work, shown in Figure 3.3, is based on the ResNet-

like [43] generator in CycleGAN [132] with a number of improvements detailed below.

Generally, the model consists of 2 down-sampling blocks (DS1 and DS2), followed by

Chapter 3. Methods 22

9 residual blocks (RBi for 1 ≤ i ≤ 9), then 2 up-sampling blocks (US1 and US2). The

down-sampling block uses a 2D strided convolution layer to reduce the spatiotemporal

dimensions by factor of 2, which is then follows by Instance Normalization [112],

LReLU [67] activation and Spatial Dropout [110]. The up-sampling block has the same

structure as the down-sampling block but with a transposed convolution layer instead.

The residual block consists of two convolution blocks with padding added to offset the

dimensionality reduction and a skip connection that connect the input to the block with

the output of the last convolution block via element-wise addition. A convolution layer

with a filter size of 1 then compresses the channel of the output from US1, followed by

sigmoid activation to scale the final output to have range [0,1].

Residual connections have been shown to improve gradient flow in DNNs thus mitigate

the issue of vanishing gradient and allow deeper networks to be trained effectively [43,

44, 48]. Therefore, shortcut connections are added between the down-sampling and up-

sampling blocks of the same level. For instance, the output of down-sampling block DS2

is concatenated with the output of residual block RB9, then passes the resultant vector to

the next up-sampling block US1. Such level-wise residual connection was introduced in

the popular image segmentation model UNet [92]. We denote the level-wise residual

connected network used in this work as ResNet.

Furthermore, we introduce an Attention Gate (AG) module, based on Oktay et al. [80],

as a replacement for the concatenation operation in the residual connection described

above. The yellow block in Figure 3.3 illustrates the AG structure. AG takes two

inputs q and a, both with height HAG and width WAG but varying channels, where q

is the output of the previous processing block and a is a shortcut connection from the

down-sampling block of the same level. In AG1 for instance, q and a are the output of

RB9 and DS2 respectively. Both q and a are processed by a (separate) 1×1 convolution

layer followed by Instance Normalization. The two vectors are then summed element-

wise such that overlapping regions from the two vectors would have higher intensity.

We then apply ReLU activation to eliminate negative values, followed by a 1× 1

convolution layer with 1 filter and Instance Normalization, resulting in a vector with

shape (HAG,WAG,1). Sigmoid activation is applied to obtain a [0,1] attention mask,

where units closer to 1 indicate regions that are more relevant. Finally, we return the

element-wise multiplication between the attention mask with q. q is a set of high-level

features processed by the stack of residual blocks, whereas a is the low-dimensional

representation of the original input. Therefore, the sigmoid attention mask should learn

Chapter 3. Methods 23

to eliminate information in the input that is less relevant to the output. In other words,

AG should learn what information from the input is important in the transformation.

Moreover, as the attention mask is of the same dimension of the input q, we can later

superimpose the attention mask on q to visualize the region of interest learned by the

model. We denote the attention-gated network used in this work as AGResNet.

3.2.2 Discriminators

The discriminator in GANs, which behaves like a binary classifier, is usually made up

of dimension reduction layers and outputs a single value to indicate whether or a given

sample resembles data from a certain distribution. Such coarse-grained formulation,

albeit simple, could be problematic in cases where part of the generated sample is com-

pelling while the rest is not. For example, suppose we train a GANs to generate images

of horses. The generated image may contain a detailed horse but with an uncompelling

background, then the discriminator has to penalize the entire image as it only outputs a

single score. Therefore, Isola et al. [49] proposed that the discriminator should output

a 2D vector (for a 2D input) where each element in the output vector corresponds to

different regions w.r.t the original image. In other words, the discriminator outputs a

score for each sub-area of the original image, thus enabling the generator to receive

fine-grained feedback. The discriminators DX are DY used in this work also output

a vector of shape (Hout,Wout,1) (instead of just (1,)) where each element focus on a

particular region in the input calcium signal.

The discriminators contain 3 down-sampling blocks where each block reduces the spa-

tiotemporal dimension by a factor of 2, as as the down-sampling blocks in Section 3.2.1.

For an input sample with shape (H = 2048,W = 102,C = 1), the discriminator output

a sigmoid activated vector with shape (Hout = 256,Wout = 13,1). Each element has

range [0,1] such that a value closer to 1 suggests that the patch is from a real sample.

3.3 Implementation detail

The vast majority of the software codebase was written in Python, where the DNNs were

implemented in TensorFlow [1] thanks to its hardware optimization and vast community

support. As training 4 large DNNs requires a significant amount of computing resources,

especially in GPU memory, hence we have added multi-GPU training support in

our codebase. In addition, to take advantage of half-precision computations that are

Chapter 3. Methods 24

implemented in many recent accelerators [79, 39], our codebase also supports Mixed

Precision training [72]. Hence, the majority of computations can be performed in

float16 representation, with the exception of gradient calculations. To avoid numeric

underflow and overflow, gradient computations were done in single-precision float32.

Effectively, allowing us to fit twice as much data to the accelerator. As a result, we fit

all 4 networks with a batch size of Nbatch = 4 on a single NVIDIA V100 GPU and it

can scale up almost linearly with the number of GPUs.

GANs themselves are notoriously hard to train, with problems such as mode collapse,

diminishing gradients and non-convergence to name a few [4, 8]. Training 2 GANs in

conjunction further magnify the said challenges. Therefore, we have implemented and

adapted several techniques to improve some of the model instability issues. Typically,

the discriminator receives 0-1 class labels, where a label value of 0 indicates the given

sample is generated whereas a label value of 1 indicates a real sample [5, 41, 70].

However, such formulation could cause the discriminator to be overconfident in its

predictions, especially early on in the training process when the generated samples

are not at all compelling [96]. To address the said issue, we applied label smoothing

to both discriminators, a technique that is commonly used in classifiers [76], where

values between [0.9,1.0] represent real samples and [0.0,0.1] for generated samples.

In addition, we have adopted the two-time scale update rules, where generators and

discriminators have different learning rates, thus allowing the generators to make small

but steady improvements to fool the discriminators [47]. We set a learning rate of

αG = 0.0001 and αD = 0.0004 for the generators and discriminators respectively and

trained all 4 networks with Adam optimizer [57]. Table A.1 shows the hyper-parameters

used to train our model with different GANs objective functions; note that AGResNet

does not introduce any additional hyper-parameters.

Chapter 3. Methods 25

CycleGAN

Discriminator D X

Preprocessing

segementation

order neurons

augmentation

Discriminator D Y

Generator G

1

Generator F

3

2

3

4

5

cy
cl

e-
co

ns
ist

en
t l

os
s

6

6

Anaylsis

Ca 2+ signals comparsion

GradCAM activation maps

Cascade spike inference

spike analysis

Autoencoder

Figure 3.1: Illustration of the complete pipeline used in this work. Black directed lines

represent the flow of data and the numbers indicate its order. Note that only the forward

cycle step X → Y → X is shown here for better readability.

Chapter 3. Methods 26

Padding
CONV Block

CONV Block DS 1

CONV Block DS 2

Residual Block RB i

Padding

Padding
CONV Block

CONV Block

+

Input

×9

Attention Gate AG 1

Attention Gate AG 2

DECONV Block US 2

DECONV Block US 1

Padding
CONV

Output

Sigmoid

InstanceNorm
CONV

LReLU
SpatialDropout

residual connection

1×1 CONV
InstanceNorm

1×1 CONV
ReLU

InstanceNorm

+

Sigmoid

×

1×1 CO
N

V
InstanceN

orm

a
q

Figure 3.3: Architecture diagram of generator G and F . + and × denotes addition and

element-wise multiplication respectively. Note that the Attention Gate (AG) block can be

replaced by a concatenation operation between the output of the previous block and the

output from the down-sampling block from the same-level. e.g. if AG is not used, then

the input to US1 is concat(DS2,RB9).

Chapter 4

Results

In this chapter, we present the results that demonstrate the CycleGAN framework can

learn meaningful transformations between two distributions of neuronal activities with

unknown mapping. In other words, given the calcium imaging signals recorded from

a mouse on the first day of the behaviour experiment, can we translate the input to

signals that correspond to expert-level activities and vice versa. To show that our

method is capable of learning subtle differences in calcium traces, we first fit our

model on the synthetic dataset, which has known ground truth thus allows direct

comparison. In addition, we also investigate the GANs objective formulations and

generator architectures described in Section 3.2. Next, we evaluate our method with

data recorded from the mouse virtual-corridor experiment. We analyze both generated

calcium signals and their inferred spike trains statistics. Moreover, we explore different

neuron spatial ordering strategies and their effects on the model performance. We

employ feature-importance and self-attention methods that enable us to interpret what is

being learned by the models. All models presenting below were trained for 200 epochs

where most models converge by ∼ 180 epochs.

4.1 Synthetic data

In order to ensure that the CycleGAN framework can indeed learn transformation

between two unpaired distributions of calcium fluorescent signals, hence we train the

model on a synthetic dataset X and Y = Φ(X), where Φ is a known spatiotemporal

transformation (see Section 3.1.3). Moreover, we randomize the index of the training

set, so that X and Y = Φ(X) appears to be unaligned to the two generators, while we

27

Chapter 4. Results 28

can still directly compare the generated samples |Y −G(X)| and |X −F(Y)| on the

aligned test set. In addition, as we can directly evaluate the performance of the model,

we also use the synthetic dataset to compare different generator architectures and GANs

objective formulations detailed in Section 3.2.

We first fit our model with different generator architectures with the LSGAN objective.

In addition to ResNet and AGResNet, we have also included an identity model as

a baseline. Figure 4.1 shows calcium signals of a forward and backward cycle of 3

neurons from AGResNet. Notice that as the neuron index increase, the region replaced

with noise also lengthen. For instance, the first ∼ 22 seconds of the signals in neuron

#75 were noise in comparison to ∼ 9 seconds for neuron #27 in Figure 4.1b. We can

see that AGResNet can learn the transformation Φ from unpaired X and Y = Φ(X)

both in terms of the masked area and noise level. Figure A.1 shows the forward and

backward cycle step of all 102 neurons from a randomly selected sample, the diagonal

augmentation can be clearly seen in the generated output ŷ = G(x). Table 4.1a listed the

mean absolute errors of the direct and cycle-consistent comparison of 200 test samples.

Note that the identity model should have perfect cycle-consistent loss as F(G(x)) and

G(F(y)) do not operate on the data. Nevertheless, both ResNet and AGResNet achieved

better results than the identity model in the |X−F(Y)| and |Y −G(X)|, despite the fact

that Φ is a relatively simple augmentation and one would expect the difference between

X and Φ(X) to be small. This suggests that the CycleGAN framework, along with our

proposed generator architectures, can indeed learn subtle spatiotemporal transformations

in calcium fluorescent signals.

Since Φ(X) = Y performed a systematic spatiotemporal transformation to X , one

would expect the networks to learn features that focus on the augmented region of

the data. We, therefore, use GradCAM [98] to visualize regions of interest learned

by the discriminators. The localization map of discriminator DY (Y) when given an

augmented real sample y = Φ(x), shown in Figure 4.2b, demonstrates a high level of

attention along the diagonal masked region on the input. This indicates that, intuitively,

DY learned to distinguish whether or not a given sample is from distribution Y = Φ(X)

by predominantly focusing on the edge of the masking area. On the other hand, no

augmentation was done on the input to discriminator DX , hence it should not be able to

learn the distinct features as DY did. Figure 4.2a shows the GradCAM localization map

of DX(X), which does not appear to have a particular structural area of focus at first.

However, when we overlay the reward zones on the input (indicated by yellow-orange

Chapter 4. Results 29

dotted lines), which were not provided in the training data or modelled in the training

objectives, we can see that the focused regions are loosely aligned with the reward

zones. Note that reward zones are external task-relevant regions that are expected to

shape the neural activity in the primary visual cortex as the visual patterns change

when the mouse enters the reward zone. Hence, suggesting that DX could have learned

distinctive patterns from neurons ∼ #5− #15 around the reward zones. We can also

extract the learned sigmoid attention masks in AGResNet to visualize where in the input

w.r.t the output that G and F were learning from. Figure 4.3 shows the sigmoid mask in

AG1 and AG2 from G and F when given real input x and y = Φ(x). AG1 and AG2 in G

showed that they ignored the augmentation region (bottom left corner), whereas F paid

slightly higher attention to the masked area w.r.t the to the rest of the area. These are

reasonable patterns as the augmented region in the generated output ŷ = G(x) should

be replaced by noise and not dependent on x, hence can be ignored. Conversely, F

would pay more attention to the masked region in y = Φ(x) so that it could extract more

relevant information to replace those area with signals.

Next, we evaluate how well different common GANs objective functions can cope

with the CycleGAN framework. To mitigate the issues of vanishing gradient and mode

collapse, WGANGP [5] and DRAGAN [58] both utilize gradient penalty regularization

to enforce the 1-Lipschitz condition in the discriminator, and such method has been the

go-to approach in unconditional GANs [50, 118, 82]. Nevertheless, in addition to the

increase of computation cost, the gradient penalty term could further complicate the

already perplexing CycleGAN objectives. To this end, we compare results of CycleGAN

with AGResNet generators trained using the GAN [38], LSGAN [70], WGANGP [5]

and DRAGAN [58] objectives. Based on our experiments with the synthetic data,

LSGAN achieved slightly better results than GAN while both performed better than

identity (see Table 4.1b). Interestingly, the two gradient penalty methods had lower

cycle-consistent errors than GAN and LSGAN yet performed significantly worse in the

|X−F(Y)| and |Y −G(X)| comparisons. This suggests that the discriminators could be

overpowered by the generators when trained with WGANGP and DRAGAN, in which

DX(F(Y)) and DY (G(X)) are neither informative nor influential to the overall objective

thus the intermediate outputs Ŷ = G(X) and X̂ = F(Y) are not as important. This allows

the generators to focus on optimizing the cycle-consistent loss. Further investigation in

the relationship between sensory data and different objective formulations in CycleGAN

is needed. Nevertheless, thanks to its lower computational cost and better performance,

Chapter 4. Results 30

we use the LSGAN objective formulation, along with AGResNet as the generator

architecture, for the remainder of this work unless otherwise stated.

0

5
x

0.0

2.5

G(x)

0

5
F(G(x))

0

2

F/
F

0

2

0

2

0 21 42 64 85
0.0

2.5

0 21 42 64 85
Time (s)

0

1

0 21 42 64 85
0.0

2.5

#6
Neuron

#27
#75

(a) Forward cycle: X → Y → X

0

5
y

0.0

2.5

F(y)

0

5
G(F(y))

0

2

F/
F

0

2

0

2

0 21 42 64 85
0

2

0 21 42 64 85
Time (s)

0

2

0 21 42 64 85
0

2

#6
Neuron

#27
#75

(b) Backward cycle: Y → X → Y

Figure 4.1: (a) forward and (b) backward cycle of neuron 6, 27 and 75 from AGResNet

trained with LSGAN. Since X and Y in the test set are paired, we would expect x≈ F(y)

and y ≈ G(x) here (see Section 3.1.3). Notice that neurons with a higher index (e.g.

neuron 75 in y) would have more units being masked out and replaced by noise. We can

see that generator F was able to reconstruct the masked out regions (e.g. neuron 27

and 75 in F(y)) that resemble the traces in X .

Chapter 4. Results 31

|X−F(Y)| |X−F(G(X))| |Y −G(X)| |Y −G(F(Y))|

(A) DIFFERENT MODELS WITH LSGAN

IDENTITY 0.247±0.023 0 0.247±0.023 0

RESNET 0.139±0.012 0.107±0.008 0.159±0.022 0.088±0.004

AGRESNET 0.102±0.023 0.056±0.003 0.129±0.027 0.068±0.008

(B) DIFFERENT OBJECTIVES WITH AGRESNET

GAN 0.138±0.014 0.073±0.004 0.156±0.022 0.118±0.007

LSGAN 0.102±0.023 0.056±0.003 0.129±0.027 0.068±0.008

WGANGP 0.398±0.053 0.026±0.016 0.327±0.013 0.052±0.017

DRAGAN 0.377±0.029 0.027±0.003 0.258±0.012 0.048±0.003

Table 4.1: Mean absolute error similarity comparison of synthetic and generated calcium

signals. (a) results from identity, ResNet and AGResNet trained with LSGAN objective

and (b) results from AGResNet trained with GAN, LSGAN, WGANGP, DRAGAN objec-

tives. Note that we can directly compare X −F(X) and Y −G(X) as the test set of X

and Y = Φ(X) are paired. Lowest non-zero value in each category marked in bold.

Chapter 4. Results 32

0

25

50

75

101
N

eu
ro

n

Dx(x) = 0.50

0 21 42 64 85
Time (s)

0

25

50

75

101

N
eu

ro
n

Input
G

radC
AM

(a) GradCAM localization map of DX(x)

0

25

50

75

101

N
eu

ro
n

Dy(y) = 0.56

0 21 42 64 85
Time (s)

0

25

50

75

101

N
eu

ro
n

Input
G

radC
A

M

(b) GradCAM localization map of DY (y)

Figure 4.2: GradCAM localization maps of (a) DX(x) and (b) DY (y) given a randomly

select x∼ X and y∼Φ(X). The top panel shows the input to the discriminator, where

yellow and orange dotted lines mark the start and end of each reward zones. The

second panel shows the GradCAM localization map superimposed on the input. Both

discriminators were not certain with their predictions, with scores DX(x) = 0.5 and

DY (y) = 0.56. This suggests that the generators are generating compelling samples

that the discriminators are not able to distinguish generated samples from real samples.

Note that trial information such as reward zone locations were not provided to the

networks, the pattern observed here was learned by the models themselves.

Chapter 4. Results 33

0 512 1024 1536 2048

0

25

50

75

101

In
pu

t

0 128 256 384 512

0

6

12

18

25

A
G

1

0 256 512 768 1024

0

12

25

37

50

A
G

2

0 512 1024 1536 2048
Time-step

0

25

50

75

101

O
ut

pu
t

(a) AG sigmoid mask from G(x)

0 512 1024 1536 2048

0

25

50

75

101

In
pu

t

0 128 256 384 512

0

6

12

18

25

A
G

1
0 256 512 768 1024

0

12

25

37

50
A

G
2

0 512 1024 1536 2048
Time-step

0

25

50

75

101

O
ut

pu
t

(b) AG sigmoid mask from F(y)

Figure 4.3: Attention masks in AGResNet from (a) G(x) and (b) F(y) with x ∼ X and

y∼ Y = Φ(X) on the synthetic dataset (see Section 3.1.3). We can see that G : X →
Y = Φ(X) ignored the augmented region (bottom left triangle) in both latent dimensions,

as it was not informative to the translation process. Whereas F : Y = Φ(X)→ X paid

slightly more attention (w.r.t to the rest of the area) in the augmented region, which it

had to fill with signals. Each column from top to bottom shows: the input, the sigmoid

mask in AG1 and AG2 superimposed with the input to the respective AG, and the model

output. The histogram on the right side of each AG panel shows spatial attention. Notice

that dimensions in AG1 and AG2 are different from the original input. Dotted yellow and

orange lines on the input panel mark the beginning and end of the reward zone in each

trial.

Chapter 4. Results 34

4.2 Recorded data

As our proposed method has shown great results in learning the unpaired transformations

in the synthetic dataset, we now move on to the data recorded from the mouse virtual-

corridor experiment (see in Section 2.1.1) where we attempt to learn the unknown

mapping between pre-learning and post-learning neuronal activity. Since the LSGAN

objective formulation and AGResNet generator architecture achieved the best results in

Section 4.1, we continue to use this combination on the recorded data.

Figure A.2 shows the forward and backward cycle traces of 3 neurons from a randomly

selected sample, whereas Figure A.3 plots the entire population as a gray-scale image.

Visually, G and F seems to be able to reconstruct x̄ = F(G(x)) and ȳ = G(F(y)). Based

on the intermediate step ŷ = G(x) and x̂ = F(y), the two generators were not simply

passing through x and y that optimize for the cycle-consistent loss. Nevertheless,

unlike images where one could visually inspect the generated output, further statistical

comparisons are needed for neuronal activity. Here, we first compare the generated

calcium florescent signals with the recorded test set data. The cycle-consistent loss

on the test set achieved a value of |X −F(G(X))| = 0.092 in the forward cycle step

and |Y −G(F(Y))| = 0.101 in the backward cycle step. The identity loss, which

measures the changes to the input when the opposite transformation is applied, is

also almost perfect. For reference, the mean absolute differences between X and Y is

|X−Y |= 0.370, and that both cycle-consistent and identity loss achieved significantly

better error than that. This suggest G and F are not simply passing through the

data without any processing. In addition, the low identity loss indicates that the

generators can correctly identify whether or not the given input is already part of its

target distribution. Table 4.2 reports the mean and standard deviation of the calcium

signals comparisons.

To better analysis the two intermediate transformations ŷ = G(x) and x̂ = F(y), and

show that G and F properly converted x and y into their respective distributions ŷ ∼
Y and x̂ ∼ X , we compute and compare a set of spike trains statistics. Firing rate,

pairwise correlation and pairwise van Rossum distance are spike statistics are commonly

used in neuroscience to characterize a spike train. As such, the distributions of these

statistics from the generated data should resemble the recorded data. We used the

deconvolution toolbox Cascade [94] to infer spike trains from the calcium fluorescent

signals for all 6 data distributions: X , Y , G(X), F(Y), F(G(X)) and G(F(Y)), we

Chapter 4. Results 35

can then the distributions in the following combinations: X | F(Y), X | F(G(X)),

Y | G(X) and Y | G(F(Y)). The results of the mentioned spike trains statistics are

shown in Figures A.4, A.5, A.6 and A.7. The firing rates and pairwise correlation

distributions from F(Y), F(G(X)), G(X) and G(F(Y)) can closely match the recorded

X and Y distributions. In addition, for certain neurons in the van Rossum distance

heatmaps for X | F(Y) and Y | G(X) (e.g. neuron #6 and #27 in X | F(Y)), we can

observe a diagonal line of low-intensity values. Hence, there exists a spike train in

X and Y that corresponds to a generated spike train in F(Y) and G(X) respectively.

Though this pattern did not exhibit in all neurons, this could be due to the fact that

we shuffle both X and Y independently, where the corresponding activities for certain

neurons were not in the test set, hence cannot be shown in the heatmap comparison.

Nonetheless, to quantify the generation performance, Table 4.3 shows the average KL

divergence of the spike statistics comparison. Overall, all 3 metrics used have achieved

a low average KL divergence value, with the highest value being the firing rate of

KL(X ,F(G(X))) = 1.396±1.265. This indicates that the generators can indeed learn

the distribution transformation from pre-learning to post-learning neuronal activities,

and vice-versa.

In the previous section, we were able to identify and interpret the learned features in a

relatively straightforward manner due to the systematic augmentation we introduced

into the data. However, visualizing and interpreting the attention maps on pre-learning

and post-learning data could be more challenging as there would not be obvious patterns

in the inputs to anticipate. Nevertheless, we would expect a higher level of activities in

the V1 neurons when the rodent is about to enter or inside the reward zone, where the

grating pattern on the virtual wall turns dark. Therefore, we suspect that the generators

and discriminators would pay more attention to those areas with distinct neuronal

activities. We first visualize the sigmoid attention masks in AGResNet. Note that the

two AG modules operated at latent representations with dimensions that were 4 times

and 2 times lower than the original input (i.e. the attention masks of AG1 and AG2 have

shapes (512,26,1) and (1024,512,1) when the input shape is (2048,102,1)), hence

we could not simply align the reward zones with the learned masks. Figure 4.4 shows

the learned attention masks of G(x) and F(y) superimposed with the latent inputs of the

corresponding AG. Both AG1 masks in G and F appear to focus on neurons with higher

index, whereas the spatial attention distributions were even in AG2. Nevertheless, we

were unable to identify clear patterns in the attention masks as we did with the synthetic

Chapter 4. Results 36

dataset.

Since GradCAM projects activation values w.r.t to the input, instead of the latent repre-

sentations, we could gain more insights about the learned features from the localization

maps. Figure 4.5 shows the GradCAM localization maps for DX(x) and DY (y) with

a randomly selected x ∼ X and y ∼ Y . We observed some regions of high attention

around the reward zones in DX(x), albeit not prominent and even less so with DY (y).

To better visualize the relationship between area of focus learned by the model and the

virtual-environment experiment, we aggregated the attention values in GradCAM w.r.t

the virtual location of the rodent over 200 test samples (which contain about 30 trials).

The results of such positional attention maps are shown in Figure 4.6. Both DX(X) and

DY (Y) had higher level of attention towards to first ∼ 40 neurons. In which neurons

∼ #0− #30 in X received strong attention within the reward zone in DX . Whereas

the attention from DY (Y) were more sparse, with above-average attention around 40

- 80cm then at the end of the reward zone. Keep in mind that the only objective the

discriminators had was to distinguish if a given sample is from a particular distribution.

Thereby it is possible that the discriminators were learning trivial features, instead of to

the virtual-environment task. Since the positional attention maps were able to uncover

these interesting patterns, we then extract the maps from G(X) and F(Y) following the

same procedure. Figure 4.7 shows the positional attention maps for the two generators.

Interestingly, generator G also paid high level of attention around the reward zone and

in neurons located at the top part of the input, specifically neuron ∼ #8, similar to

the attention map obtained from DX . On the other hand, the attention map from F(Y)

indicates that the activities from neurons ∼ #30−#80 at the beginning of the reward

zone were highly influential in its transformation process. Note that no trial information

was incorporated into the training data nor was it formulated in the objective function.

Hence, these interesting patterns we observe here were learned entirely by the networks

themselves via the adversarial process.

MODEL |X−F(G(X))| |X−F(X)| |Y −G(F(Y))| |Y −G(Y)|

AGRESNET 0.092±0.051 0.024±0.020 0.101±0.081 0.025±0.011

Table 4.2: Cycle-consistent and identity loss of AGResNet on test set. For reference,

|X−Y |= 0.370±0.027.

Chapter 4. Results 37

MODEL KL(X ,F(Y)) KL(X ,F(G(X))) KL(Y,G(X)) KL(Y,G(F(Y)))

(A) FIRING RATE

IDENTITY 8.131±6.600 0 7.533±6.754 0

AGRESNET 1.191±1.077 1.396±1.265 1.336±0.979 1.320±1.359

(B) PAIRWISE CORRELATION

IDENTITY 0.880±0.531 0 0.824±0.472 0

AGRESNET 0.149±0.074 0.034±0.023 0.055±0.045 0.024±0.018

(C) PAIRWISE VAN ROSSUM DISTANCE

IDENTITY 0.544±0.297 0 0.308±0.114 0

AGRESNET 0.253±0.173 0.108±0.037 0.333±0.168 0.152±0.063

Table 4.3: Average KL divergence of (a) firing rate, (b) population pairwise correlation

and (c) population pairwise van Rossum distance from inferred spike trains. Note that

the identity model is added here as a baseline comparison and should obtain perfect

cycle reconstruction. The per-neuron and per-trial distribution comparisons are shown in

Appendix A.2.1. Entries with the lowest value are marked in bold.

Chapter 4. Results 38

0 512 1024 1536 2048

0

25

50

75

101

In
pu

t

0 128 256 384 512

0

6

12

18

25

A
G

1

0 256 512 768 1024

0

12

25

37

50

A
G

2

0 512 1024 1536 2048
Time-step

0

25

50

75

101

O
ut

pu
t

(a) AG sigmoid mask in G(x)

0 512 1024 1536 2048

0

25

50

75

101

In
pu

t

0 128 256 384 512

0

6

12

18

25

A
G

1

0 256 512 768 1024

0

12

25

37

50

A
G

2

0 512 1024 1536 2048
Time-step

0

25

50

75

101

O
ut

pu
t

(b) AG sigmoid mask in F(y)

Figure 4.4: Attention masks in AGResNet from (a) G(x) and (b) F(y) with x ∼ X and

y∼ Y on the recorded dataset. No noticeable patterns were obtained from the learned

attention masks in G and F . Each column from top to bottom shows: the input, the

sigmoid mask in AG1 and AG2 superimposed with the input to the respective AG, and

the model output. The histogram on the right side of each AG panel shows spatial

attention. Notice that dimensions in AG1 and AG2 are different from the original input.

Dotted yellow and orange lines on the input panel mark the beginning and end of the

reward zone in each trial.

Chapter 4. Results 39

0

25

50

75

101

N
eu

ro
n

Dx(x) = 0.53

0 21 42 64 85
Time (s)

0

25

50

75

101

N
eu

ro
n

Input
G

radC
AM

(a) GradCAM localization map of DX(x)

0

25

50

75

101

N
eu

ro
n

Dy(y) = 0.50

0 21 42 64 85
Time (s)

0

25

50

75

101

N
eu

ro
n

Input
G

radC
AM

(b) GradCAM localization map of DY (y)

Figure 4.5: GradCAM localization maps of (a) DX(x) and (b) DY (y) given a randomly

select x∼ X and y∼Y . The top panel shows the input to the discriminator, where yellow

and orange dotted lines mark the start and end of each reward zones. The second panel

shows the GradCAM map superimposed with the input. The discriminators were not

able to make a decisive prediction, with a score of DX(x) = 0.53 and DY (y) = 0.50 (real

samples should have a score of 1). This would suggest that the generators have been

generating compelling samples such that the discriminators were not able distinguish

them. However, this could also harm the generators as they no longer receive informative

critics on their predictions.

Chapter 4. Results 40

0 40 80 120 160
Distance (cm)

0

25

50

75

101

N
eu

ro
n

0.0

0.2

0.4

0.6

0.8

1.0

(a) DX(X) positional attention map

0 40 80 120 160
Distance (cm)

0

25

50

75

101

N
eu

ro
n

0.0

0.2

0.4

0.6

0.8

1.0

(b) DY (Y) positional attention map

Figure 4.6: Positional attention maps of (a) DX(X) and (b) DY (Y) w.r.t virtual distance

in the animal experiment. Overall, the two discriminators were focusing on neurons

with index ∼ #0− #40, with higher level of attention around the reward zone. These

positional activation maps were generated by computing the GradCAM activation for all

200 test samples then average the activation value for each neuron and each position

in the virtual environment (160cm in total). Yellow and orange dotted lines indicate the

reward zone, which is located at 120cm to 140cm in each trial.

Chapter 4. Results 41

0 40 80 120 160
Distance (cm)

0

25

50

75

101

N
eu

ro
n

0.0

0.2

0.4

0.6

0.8

1.0

(a) G(X) positional attention map

0 40 80 120 160
Distance (cm)

0

25

50

75

101

N
eu

ro
n

0.0

0.2

0.4

0.6

0.8

1.0

(b) F(Y) positional attention map

Figure 4.7: Positional attention maps of (a) G(X) and (b) F(Y) w.r.t virtual distance

in the animal experiment. Generator G had high attention specifically in neuron ∼ #8,

within the reward zone in particular. Whereas F were focusing on neurons ∼ #30−#80

in the area before and during the reward zone. These positional activation maps were

generated by computing the GradCAM activation for all 200 test samples then average

the activation value for each neuron and each position in the virtual environment (160cm

in total). Yellow and orange dotted lines indicate the reward zone, which is located at

120cm to 140cm in each trial.

Chapter 4. Results 42

4.2.1 Neuron spatial order

With the promising results shown in the synthetic and recorded datasets, we move on to

investigate whether or not the neuron spatial orders can affect the performances of the

networks. As discussed in Section 3.1.2, convolutional layers in DNNs have limited

receptive field, that is, the region that the network can “see” in an instance is restricted

by the kernel size. Hence, we propose that sorting the index of neurons in a systemic

manner could improve the network’s ability to learn spatiotemporal information from

neuronal activities. To this end, we test two sorting approaches to order neurons in the

data matrix: 1) firing rate in descending order, 2) deep autoencoder reconstruction loss

in ascending order.

In the first approach, we simply sort the neurons by their firing rate in the train set

where the neuron with the highest firing rate would be set to index 0 in the data matrix.

With the second approach, we first trained two deep autoencoders AEX and AEY which

learn to reconstruct X and Y individually. We then use the reconstruction loss in the

test set to rank the neurons where the neuron with the lowest reconstruction loss would

be set to index 0. By doing so, we expect that the deep autoencoders would perform

better on neurons with prominent activities (i.e. neurons that are more influential to the

behaviour task) hence grouping relevant neurons together along the first axis in the data

matrix. Figure 4.8 shows the neuron orders of X and Y based on the reconstruction loss

from AEX and AEY . Notice that X and Y were sorted differently despite having the same

original annotation order, though we did not observe any obvious spatial patterns in the

ordering. Interestingly, we observed that the autoencoders performed better with low-

firing neurons initially. And as the training progress, the models learned to reconstruct

more active neurons better. Figure A.8 and Figure A.9 show the neuron spatial orders

from AEX and AEY at epoch 1, 50 and 10. In which the spiking distribution along the

spatial dimension was quite even at epoch 1, then the general trend shifts upward as we

train the model. Yet, the distribution histograms indicated that the neurons were not

ordered by spiking activities entirely; for instance, some neurons in Y had higher firing

rates though lower ranks in Figure A.9c. This suggests that the deep autoencoders were

also learning other features from the neuronal activities rather than purely on spiking

patterns.

Following the same training and validation procedure in Section 4.2, we have re-

trained the AGResNet models with data sorted according to the firing rate, as well as

autoencoder reconstruction loss. Note that to ensure a fair comparison, neurons were

Chapter 4. Results 43

re-arranged to their original order prior to any metrics calculation. Table 4.4 reports

the cycle-consistent and identity calcium signals comparisons, and Table 4.5 reports

the average KL divergence in the spike trains statistics. Across the board, models

trained with ordered neurons achieved better results. Moreover, sorting neurons based

on the reconstruction loss also outperformed the firing rate approach in most metrics,

with the exception of the backward cycle-consistent loss |Y −G(F(Y))| and pairwise

van Rossum distance in KL(X ,F(G(X))), though the differences between the sorting

approaches in those two statistics were less than 4%.

With neurons that are more influential being ranked higher in the spatial order, we would

expect the attention of the generators also focus on the top region of the inputs, instead

of the broad attention shown in Figure 4.4. Indeed, the learned attention masks shown

in Figure 4.9 display an increase of focus onto the top area of their respectively latent

inputs for both G and F . Hence, suggesting that ordering neurons that are correlated to

be close in space can indeed improve the performance of convolutional-based DNNs.

Moreover, the deep autoencoder approach could be an effective and data-driven method

to learn such correlation.

1

2

3

4
5

6

7

8

9

10
11

12

13

14

15

1617

18

19
20

21

22

23

24

25

26 27

28

29

30

31

32

33

34

35

36

37 3839

40

41

42

43

44
45

46

47

48
49

50

51

52

53

54

55

56

57

58

59

60

61

6263

64

65

66

67

68

69
70

71

72

73

74
75

7677

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92
93

9495
96

97

98

99

100

101

102

(a) X annotation order

1

2

3

4

5

6

7

8

910

11

12

13

14

15

16

17
18

19
20

21
22

23
24

25

26
27

28 29

30

31 32

33

34

35

36

37
38

39

40

41

42

43

44

45

46

47

48

49

50
51

52

53

54

55

56
57

58

59

60

61

62

63
64

65

6667

68

69

70
71

72

7374

75

76

77
78

79

80

81

82

83 84

85

86

87
88

89

90

91

92

93

94
95

96

97
98

99

100

101

102

(b) Y annotation order

Figure 4.8: Annotation order of (a) X and (b) Y sorted by the reconstructions error from

deep autoencoders AEX and AEY (see Section 3.1.2). Figure 2.1b shows the original

annotation order.

Chapter 4. Results 44

SORT BY |X−F(G(X))| |X−F(X)| |Y −G(F(Y))| |Y −G(Y)|

NONE 0.092±0.051 0.024±0.020 0.101±0.081 0.025±0.011

FIRING RATE 0.078±0.027 0.011±0.005 0.062±0.015 0.017±0.009

AUTOENCODER 0.066±0.007 0.010±0.001 0.064±0.004 0.009±0.001

Table 4.4: Cycle-consistent and identity loss of AGResNet with neurons ordered by 1)

no order, 2) firing rate and 3) autoencoder reconstruction loss. The lowest loss in each

category marked in bold.

SORT BY KL(X ,F(Y)) KL(X ,F(G(X))) KL(Y,G(X)) KL(Y,G(F(Y)))

(A) FIRING RATE

NONE 1.191±1.077 1.396±1.265 1.336±0.979 1.320±1.359

FIRING RATE 1.159±0.854 1.345±1.254 1.218±1.067 1.123±0.890

AUTOENCODER 1.156±0.934 1.289±1.230 1.148±0.772 1.116±0.877

(B) PAIRWISE CORRELATION

NONE 0.149±0.0.074 0.034±0.023 0.055±0.045 0.024±0.018

FIRING RATE 0.047±0.034 0.030±0.019 0.051±0.049 0.024±0.019

AUTOENCODER 0.042±0.025 0.030±0.014 0.047±0.043 0.017±0.013

(C) PAIRWISE VAN ROSSUM DISTANCE

NONE 0.253±0.173 0.108±0.037 0.333±0.168 0.152±0.063

FIRING RATE 0.252±0.198 0.097±0.032 0.310±0.127 0.139±0.052

AUTOENCODER 0.237±0.162 0.100±0.043 0.308±0.122 0.128±0.058

Table 4.5: KL-divergence comparison inferred spike trains from between recorded and

generated data of neurons ordered by 1) no order, 2) firing rate and 3) autoencoder

reconstruction loss. Entries with lowest average KL divergence are marked in bold.

Chapter 4. Results 45

0 512 1024 1536 2048

0

25

50

75

101

In
pu

t

0 128 256 384 512

0

6

12

18

25

A
G

1

0 256 512 768 1024

0

12

25

37

50

A
G

2

0 512 1024 1536 2048
Time-step

0

25

50

75

101

O
ut

pu
t

(a) AG sigmoid mask in G(x)

0 512 1024 1536 2048

0

25

50

75

101

In
pu

t

0 128 256 384 512

0

6

12

18

25

A
G

1

0 256 512 768 1024

0

12

25

37

50

A
G

2

0 512 1024 1536 2048
Time-step

0

25

50

75

101

O
ut

pu
t

(b) AG sigmoid mask in F(g)

Figure 4.9: Attention masks in AGResNet from (a) G(x) and (b) F(y) with x ∼ X and

y∼ Y where both X and Y were pre-sorted with autoencoder reconstruction loss (see

Section 3.1.2). that was pre-sorted with autoencoder reconstruction loss. As compared

to the model trained without a particular ordering (i.e. Figure 4.4), the spatial attention

(represented by horizontal histograms) here showed that both G and F shifted their

attention toward the top part of the inputs where relevant neurons were located. Along

with the better results in calcium signals comparisons and spike statistics (see Table 4.4

and 4.5), the attention maps suggest that convolutional-based models can learn better

features when relevant neurons are grouped together in space. Each column from top to

bottom shows the input, the sigmoid mask in AG1 and AG2 superimposed with the input

to the respective AG, and the model output. Notice that dimensions in AG1 and AG2 are

different from the original input. Dotted yellow and orange lines on the input panel mark

the start and end of the reward zone in each trial.

Chapter 5

Discussion

Understanding the learning process in the brain has been one of the main goals in the

field of computational neuroscience, though extracting an unbiased and interpretable

description of the high-dimensional neural responses in the course of learning is an

arduous challenge. In this work, we demonstrated that the cycle-consistent adversarial

networks [132] framework is a capable data-driven method to model the transformation

between pre-learning and post-learning in vivo neuronal activities.

To verify that our method can indeed learn subtle changes in two unpaired distributions

of calcium fluorescent signals, we first evaluate our framework with a synthetic dataset.

Using the neuronal activities recorded in the primary visual cortex of a behaving

mouse, we applied a spatiotemporal augmentation to the signals, hence resulting in

two seemingly unaligned distributions where we could reverse the transformation and

compare the generated samples directly. We showed that the generated samples from

the CycleGAN framework could model both spatiotemporal transformation and added

noise in the synthetic dataset with almost perfect reconstructions. Then, we fitted our

model with data collected on the first and fourth day of the mouse virtual-environment

experiment, which represents pre-learning and post-learning cellular activities. In

addition to the calcium signals cycle-consistency comparison, we also compared 3

commonly used spike trains statistics, including firing rate, pairwise correlation and

pairwise van Rossum distance. We demonstrated that the generated samples could

closely match the spatiotemporal first and second-order statistics of the respective target

distribution.

Ultimately, we are interested in interpreting what and how neuronal activities evolve

46

Chapter 5. Discussion 47

with experience, and the two visualization methods we employed have shown inter-

esting patterns learned by the generators and discriminators. First, we incorporated

GradCAM [98] into our framework, which generates localization maps based on the

gradient of the model to highlight areas of interest w.r.t to the input. Second, based

on the ResNet architecture [43] and Attention Gate module [80], we introduced a self-

attention generator architecture – AGResNet. The self-attention mechanism enabled

the generators to self-adjust their level of attention w.r.t the latent representation of

the input. With the synthetic dataset, we observed a high level of attention around

the augmented region in the artificial data, which is reasonable as the spatiotemporal

transformation and the order of the data were the only two differences in the otherwise

paired domains. Whereas in the recorded dataset, the extracted attention maps showed

that the networks focused on areas surrounding the reward zones. This suggests the

networks were able to self-identify activities around the reward zones that are most

relevant in their respective translation process. These findings were closely aligned

with our expectations where neural activities are shaped by the external task, in this

case, in the reward zones where the visual patterns changed and the rodent would be

rewarded given the right action. Importantly, we did not provide any trial information

into the training data nor incorporated them into the training objectives. Despite that, the

self-attention mechanism along with the CycleGAN framework was able to self-identify

this information.

We believe this work is beneficial to both the computational neuroscience community

and the machine learning community. We demonstrated that CycleGAN is an effective,

and more importantly, data-driven method to model complex and high-dimensional neu-

ronal activities. Visualization methods such as GradCAM and self-attention networks

enable practitioners to understand what is being learned by a deep neural network, which

is known as a black-box model as there is no direct to interpret its prediction [14, 40].

For instance, the positional attention maps, such as the ones presented in Figure 4.7,

could guide experimentalists to conduct further analysis at specific neurons or locations

with high attention values. Furthermore, we introduced a novel approach to pre-sort

the spatial order of each neuron, such that neurons that are more relevant to each other

are closer in space and enable more effective learning by CNNs. In our experiments,

such preprocessing procedure saw measurable improvements in all metrics, and the

self-attention masks showed that the generators were able to centralize their focus

onto the top region of the input. Computational neuroscientists could improve the

Chapter 5. Discussion 48

performance of their convolutional-based deep learning models in neuronal activities

related applications by applying this simple pre-sorting operation.

From the technical point of view, we have investigated various aspect of training very

large deep generative models. We incorporated 5 popular GANs objective formulations

into the CycleGAN framework, including GAN [38], LSGAN [70], WGANGP [5] and

DRAGAN [58]. Our evaluation results have shown that the LSGAN formulation yield

the generation performance, partly due to the fact that the inclusion of gradient penalty

would further complicate the already complex discriminator objective formulation. In

addition, we showed that techniques that are commonly used in vanilla GANs, such

as label smoothing and two-time scale update rules, also work well in the CycleGAN

framework.

5.1 Limitations

We would like to highlight a number of biases and limitations of our work. A significant

portion of the neuronal activity analysis in Section 4.2 were performed in spike trains

inferred from the recorded and generated calcium fluorescent signals. We used the deep

learning ensemble deconvolution algorithm Cascade [94] to perform spike inference,

which is a recently introduced method that has outperformed existing model-based

algorithms. However, spike inference from fluorescent calcium indicators signals

remains an active area of research [108]. For instance, Vanwalleghem et al. [113]

demonstrated that spiking activities could be missed due to the implicit non-negative

assumption in calcium imaging data which exists in many deconvolution algorithms,

including Cascade. Nonetheless, we would like to emphasize that Cascade was used

to deconvolve calcium signals for all distributions of data ergo all inferred spike trains

experienced the same bias.

Another notable constraint in our method is the fundamental one-to-one mapping lim-

itation in the CycleGAN framework. The generators learn a deterministic mapping

between the two domains and only associate each input with a single output. However,

most cross-domain relationships consist of one-to-many or many-to-many mapping.

Relating back to the French-English translation example, the french sentence “comment

ça va” has multiple correct translations, such as “how are you” but also “how is it

going”. Hence, such diverse output cannot be modelled with the CycleGAN frame-

work. Almahairi et al. [2] extended the framework to learn many-to-many mapping

Chapter 5. Discussion 49

by introducing auxiliary noise to the two distributions (i.e. G : X×ZX → Y), thus able

to generate outputs with variations. To make compatible with the cycle-consistency

objective, the authors added two encoders to the framework, each learns to generate the

auxiliary noise for their respective domains (i.e. EX : X×Y → ZX for encoder EX in X

domain). Nevertheless, their method is most effective when trained in a semi-supervised

manner which is not possible with neural activity as it is not possible to obtain paired

data. Moreover, the two DNN-based encoders introduce additional trainable parameters,

further increasing the already extensive computation cost.

5.2 Future Work

One promising research direction based on this work is to conduct further analysis

on the learned features by the generators and discriminators. Notably, the aggregated

positional attention plots (i.e. Figure 4.7 and 4.6) showed interesting attention structure

around the reward zone, despite such information was not incorporated in the training

data nor the objective function. Further analysis is needed to identify why the networks

were focusing on those regions in particular, and more importantly, can the highlighted

regions provide meaningful insights into the learning process in the brain.

Another interesting neuroscience question is to investigate the neural spatial ordering

learned by the autoencoders described in Section 3.1.2. We obtained different neuron

ordering in the pre-learning and post-learning data, suggesting that the level of impor-

tance in certain neurons changed in the course of learning. In addition, our current

pre-sorting method produces a 1-dimensional spatial ordering, we can also consider

2-dimensional ordering and use 3-dimensional convolutional layers (instead of the

current 2-dimensional) so that height and width spatial information can be considered.

From the machine learning perspective, one potential research direction is to explore

contrastive learning in cellular activity. Loss functions and distances functions such as

mean absolute error and cross-entropy loss are objectives commonly used in machine

learning models, including our work. However, most of these pixel-wise (or element-

wise) loss functions do not consider spatiotemporal information. If we shift a generated

calcium signals x̄ = F(G(y)) forward or backward by 10 time-steps, then it is possible

to obtain a better cycle-consistent loss (i.e. MAE(x, x̄)) with another sample that doesn’t

capture the latent dynamics. Chopra et al. [19] proposed contrastive loss to combat this

limitation. Rather than a unit-wise comparsion between the output and target samples,

Chapter 5. Discussion 50

we use an encoder to learn a latent representation of the output and target and compare

the two embeddings in latent space instead. Such formulation proved successful in

many computer vision-related tasks [17, 54, 84, 126] and could allow us to formulate

more expressive objectives in deep learning models for sensory data such as calcium

imaging.

5.3 Conclusion

As a concluding remark, we have demonstrated the cycle-consistent adversarial networks

are an effective and data-driven method to learn changes in neuronal activities over

the course of learning. The proposed self-attention generator architecture and feature-

importance visualization method provided intuitive approaches to interpret the learned

features in deep neural networks. In addition, the novel neuron spatial ordering method

enabled deep convolutional models to learn better representation from the neuronal

activity. As deep unsupervised methods have become more expressive and explainable,

and that neuronal activities in different learning phases from behaved animals have

become more readily available, the intersection of the two fields has limitless potentials.

Appendix A

Appendix

HYPER-PARAMETERS GAN LSGAN WGANGP DRAGAN

FILTERS 32

KERNEL SIZE 4

REDUCTION FACTOR 2

ACTIVATION LRELU

NORMALIZATION INSTANCENORM

SPATIAL DROPOUT 0.25

WEIGHT INITIALIZATION RANDOM NORMAL µ = 0 AND σ = 0.02

λ CYCLE 10

λ IDENTITY 5

λ GP N/A N/A 10 10

c N/A N/A N/A 10

NUM. DIS UPDATE 1 1 5 1

αG 0.0001

αD 0.0004

DISTANCE FUNCTION MEAN ABSOLUTE ERROR

Table A.1: The hyper-parameters used for each objective formulation. NUM. DIS UPDATE

is the number of discriminator updates for every generator update, such procedure was

introduced in optimizing WGANGP [5]. αG and αD denotes the learning rates of the

generators and discriminators. λ GP is the gradient penalty coefficient for WGANGP and

DRAGAN and c is the Gaussian variance hyper-parameter in DRAGAN.

51

Appendix A. Appendix 52

A.1 Synthetic data experiment results

0

25

50

75

101
0

25

50

75

101

Ne
ur

on

0 21 42 63 85
Time (s)

0

25

50

75

101

x
G(x)

F(G(x))

(a) Forward cycle: X → Y → X
0

25

50

75

101
0

25

50

75

101

Ne
ur

on

0 21 42 63 85
Time (s)

0

25

50

75

101

y
F(y)

G(F(y))

(b) Backward cycle: Y → X → Y

Figure A.1: (a) forward and (b) backward cycle of the entire 102 neurons from a randomly

selected segment. Model was trained with AGResNet using the LSGAN objective on the

synthetic dataset where Y = Φ(X), see Section 3.1.3 for detail.

Appendix A. Appendix 53

A.2 Recorded data experiment results

0

5

x

0.0

2.5

G(x)

0

5

F(G(x))

0

2F/
F

0.0

2.5

0

2

0 21 42 64 85
0

2

0 21 42 64 85
Time (s)

0.0

0.5

0 21 42 64 85
0

2

#6
Neuron

#27
#75

(a) Forward cycle: X → Y → X

0.0

2.5

y

0

5
F(y)

0.0

2.5

G(F(y))

0.0

2.5F/
F

0

2

0.0

2.5

0 21 42 64 85

0

1

0 21 42 64 85
Time (s)

0

2

0 21 42 64 85

0

1

#6
Neuron

#27
#75

(b) Backward cycle: Y → X → Y

Figure A.2: (a) forward and (b) backward cycle of neuron 6, 27 and 75 from a randomly

selected segment. Model was trained with AGResNet using the LSGAN objective on the

recorded dataset. Note that, unlike the synthetic dataset, the traces presented here are

not unpaired. Hence, we cannot directly compare x with F(y) or y with G(x).

Appendix A. Appendix 54

0

25

50

75

101
0

25

50

75

101

Ne
ur

on

0 21 42 63 85
Time (s)

0

25

50

75

101

x
G(x)

F(G(x))

(a) Forward cycle: X → Y → X
0

25

50

75

101
0

25

50

75

101

Ne
ur

on

0 21 42 63 85
Time (s)

0

25

50

75

101

y
F(y)

G(F(y))

(b) Backward cycle: Y → X → Y

Figure A.3: (a) forward and (b) backward cycle of the entire 102 neurons from a randomly

selected segment. Model was trained with AGResNet using the LSGAN objective on the

recorded dataset.

Appendix A. Appendix 55

A.2.1 Spike statistic analysis

Figure A.4: (top-row) firing rate, (mid-row) pairwise correlation and (bottom-row) van

Rossum distance statistic comparisons between X and F(Y). We expect the distributions

in firing rate and pairwise correlations in the generated data X̂ = F(Y) resemble the the

real distributions in X . Table 4.3 shows the mean KL divergence of each distributions.

Whereas with van Rossum distance, we there would be at least one pair of spike trains

in X and X̂ to be similar, hence a diagonal line in the sorted heatmaps. However, due

to the random shuffling done in the preprocessing, it is possible that the corresponding

spike train ŷ∼ F(Y) exists in the test set of X .

Appendix A. Appendix 56

Figure A.5: (top-row) firing rate, (mid-row) pairwise correlation and (bottom-row) van

Rossum distance statistic comparisons between X and F(G(X)). We expect the dis-

tributions in firing rate and pairwise correlations in the cycled data x̄ = F(G(x)) to be

closely matched with the real distributions in X . Moreover, we would expect there exists

a pair of spike trains in X and X̄ to be very similar, resulting in a clear diagonal line in

the sorted heatmaps. Table 4.3 shows the mean KL divergence of each distributions.

Appendix A. Appendix 57

Figure A.6: (top-row) firing rate, (mid-row) pairwise correlation and (bottom-row) van

Rossum distance statistic comparisons between Y and G(X). We expect the distributions

in firing rate and pairwise correlations in the generated data Ŷ = G(X) resemble the the

real distributions in Y . Table 4.3 shows the mean KL divergence of each distributions.

Whereas with van Rossum distance, we there would be at least one pair of spike trains

in Y and Ŷ to be similar, hence a diagonal line in the sorted heatmaps. However, due

to the random shuffling done in the preprocessing, it is possible that the corresponding

spike train ŷ∼ G(X) exists in the test set of Y .

Appendix A. Appendix 58

Figure A.7: (top-row) firing rate, (mid-row) pairwise correlation and (bottom-row) van

Rossum distance statistic comparisons between Y and G(F(Y)). We expect the dis-

tributions in firing rate and pairwise correlations in the cycled data ȳ = G(F(y)) to be

closely matched with the real distributions in X . Moreover, we would expect there exists

a pair of spike trains in Y and Ȳ to be very similar, resulting in a clear diagonal line in the

sorted heatmaps. Table 4.3 shows the mean KL divergence of each distributions.

Appendix A. Appendix 59

A.2.2 Neuron spatial order

(a) Epoch 1

(b) Epoch 50

Appendix A. Appendix 60

(c) Epoch 100

Figure A.8: Deep autoencoder AEX neuron ordering progress on X at epoch (a) 1, (b)

50 and (c) 100. The inferred blue spike trains were following its original order whereas

the orange spike trains were ordered by the reconstruction loss at the above-mentioned

epochs. The histograms on the x and y axis show the firing distributions in the temporal

and spatial dimension.

Appendix A. Appendix 61

(a) Epoch 1

(b) Epoch 50

Appendix A. Appendix 62

(c) Epoch 100

Figure A.9: Deep autoencoder AEY neuron ordering progress on Y at epoch (a) 1, (b)

50 and (c) 100. The inferred blue spike trains were following its original order whereas

the orange spike trains were ordered by the reconstruction loss at the above-mentioned

epochs. The histograms on the x and y axis show the firing distributions in the temporal

and spatial dimension.

Bibliography

[1] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S.,

Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving,

G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané,

D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner,

B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F.,

Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X. (2015).

TensorFlow: Large-scale machine learning on heterogeneous systems. Software

available from tensorflow.org.

[2] Almahairi, A., Rajeshwar, S., Sordoni, A., Bachman, P., and Courville, A. (2018).

Augmented cyclegan: Learning many-to-many mappings from unpaired data. In

International Conference on Machine Learning, pages 195–204. PMLR.

[3] Araujo, A., Norris, W., and Sim, J. (2019). Computing receptive fields of convolu-

tional neural networks. Distill. https://distill.pub/2019/computing-receptive-fields.

[4] Arjovsky, M. and Bottou, L. (2017). Towards principled methods for training

generative adversarial networks. arXiv preprint arXiv:1701.04862.

[5] Arjovsky, M., Chintala, S., and Bottou, L. (2017). Wasserstein gan. arXiv preprint

arXiv:1701.07875.

[6] Barrett, D. G., Morcos, A. S., and Macke, J. H. (2019). Analyzing biological

and artificial neural networks: challenges with opportunities for synergy? Current

opinion in neurobiology, 55:55–64.

[7] Berridge, M. J., Lipp, P., and Bootman, M. D. (2000). The versatility and universal-

ity of calcium signalling. Nature reviews Molecular cell biology, 1(1):11–21.

[8] Berthelot, D., Schumm, T., and Metz, L. (2017). Began: Boundary equilibrium

generative adversarial networks. arXiv preprint arXiv:1703.10717.

63

Bibliography 64

[9] Brock, A., Donahue, J., and Simonyan, K. (2018). Large scale gan training for high

fidelity natural image synthesis. arXiv preprint arXiv:1809.11096.

[10] Buzsáki, G. (2004). Large-scale recording of neuronal ensembles. Nature neuro-

science, 7(5):446–451.

[11] Cao, C., Liu, F., Tan, H., Song, D., Shu, W., Li, W., Zhou, Y., Bo, X., and Xie, Z.

(2018). Deep learning and its applications in biomedicine. Genomics, proteomics &

bioinformatics, 16(1):17–32.

[12] Caracciolo, L., Marosi, M., Mazzitelli, J., Latifi, S., Sano, Y., Galvan, L.,

Kawaguchi, R., Holley, S., Levine, M., Coppola, G., et al. (2018). Creb controls cor-

tical circuit plasticity and functional recovery after stroke. Nature communications,

9(1):1–16.

[13] Carlson, D. and Carin, L. (2019). Continuing progress of spike sorting in the era

of big data. Current opinion in neurobiology, 55:90–96.

[14] Casalicchio, G., Molnar, C., and Bischl, B. (2018). Visualizing the feature

importance for black box models. In Joint European Conference on Machine

Learning and Knowledge Discovery in Databases, pages 655–670. Springer.

[15] Chaudhari, S., Mithal, V., Polatkan, G., and Ramanath, R. (2019). An attentive

survey of attention models. arXiv preprint arXiv:1904.02874.

[16] Che, T., Li, Y., Jacob, A. P., Bengio, Y., and Li, W. (2016). Mode regularized

generative adversarial networks. arXiv preprint arXiv:1612.02136.

[17] Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. (2020). A simple framework

for contrastive learning of visual representations. In International conference on

machine learning, pages 1597–1607. PMLR.

[18] Chen, X., Xu, C., Yang, X., and Tao, D. (2018). Attention-gan for object transfig-

uration in wild images. In Proceedings of the European Conference on Computer

Vision (ECCV), pages 164–180.

[19] Chopra, S., Hadsell, R., and LeCun, Y. (2005). Learning a similarity metric dis-

criminatively, with application to face verification. In 2005 IEEE Computer Society

Conference on Computer Vision and Pattern Recognition (CVPR’05), volume 1,

pages 539–546. IEEE.

[20] Churchland, M. M., Cunningham, J. P., Kaufman, M. T., Foster, J. D., Nuyujukian,

Bibliography 65

P., Ryu, S. I., and Shenoy, K. V. (2012). Neural population dynamics during reaching.

Nature, 487(7405):51–56.

[21] Cohen, J. P., Luck, M., and Honari, S. (2018). Distribution matching losses

can hallucinate features in medical image translation. In International conference

on medical image computing and computer-assisted intervention, pages 529–536.

Springer.

[22] Dai, Z., Yang, Z., Yang, Y., Carbonell, J., Le, Q. V., and Salakhutdinov, R. (2019).

Transformer-xl: Attentive language models beyond a fixed-length context. arXiv

preprint arXiv:1901.02860.

[23] Dayan, P. and Abbott, L. F. (2001). Theoretical neuroscience: computational and

mathematical modeling of neural systems.

[24] Denker, M., Yegenoglu, A., and Grün, S. (2018). Collaborative HPC-enabled work-

flows on the HBP Collaboratory using the Elephant framework. In Neuroinformatics

2018, page P19.

[25] Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). Bert: Pre-training

of deep bidirectional transformers for language understanding. arXiv preprint

arXiv:1810.04805.

[26] Donahue, C., McAuley, J., and Puckette, M. (2018). Adversarial audio synthesis.

arXiv preprint arXiv:1802.04208.

[27] Dong, S., Wang, P., and Abbas, K. (2021). A survey on deep learning and its

applications. Computer Science Review, 40:100379.

[28] Driscoll, L. N., Pettit, N. L., Minderer, M., Chettih, S. N., and Harvey, C. D.

(2017). Dynamic reorganization of neuronal activity patterns in parietal cortex. Cell,

170(5):986–999.

[29] Durstewitz, D. (2017). A state space approach for piecewise-linear recurrent

neural networks for identifying computational dynamics from neural measurements.

PLoS computational biology, 13(6):e1005542.

[30] Fan, F.-L., Xiong, J., Li, M., and Wang, G. (2021). On interpretability of artificial

neural networks: A survey. IEEE Transactions on Radiation and Plasma Medical

Sciences.

[31] Gallego, J. A., Perich, M. G., Chowdhury, R. H., Solla, S. A., and Miller, L. E.

Bibliography 66

(2020). Long-term stability of cortical population dynamics underlying consistent

behavior. Nature neuroscience, 23(2):260–270.

[32] Ganmor, E., Segev, R., and Schneidman, E. (2011). The architecture of functional

interaction networks in the retina. Journal of Neuroscience, 31(8):3044–3054.

[33] Ghorbani, A., Abid, A., and Zou, J. (2019). Interpretation of neural networks is

fragile. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33,

pages 3681–3688.

[34] Gomez, A. N., Huang, S., Zhang, I., Li, B. M., Osama, M., and Kaiser, L. (2018).

Unsupervised cipher cracking using discrete gans. arXiv preprint arXiv:1801.04883.

[35] Gondara, L. (2016). Medical image denoising using convolutional denoising

autoencoders. In 2016 IEEE 16th international conference on data mining workshops

(ICDMW), pages 241–246. IEEE.

[36] Goodfellow, I. (2016). Nips 2016 tutorial: Generative adversarial networks. arXiv

preprint arXiv:1701.00160.

[37] Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep learning. MIT press.

[38] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,

Courville, A., and Bengio, Y. (2014). Generative adversarial nets. In Ghahramani, Z.,

Welling, M., Cortes, C., Lawrence, N. D., and Weinberger, K. Q., editors, Advances

in Neural Information Processing Systems 27, pages 2672–2680. Curran Associates,

Inc.

[39] Google (2021). Using bfloat16 with tensorflow models | cloud tpu | google cloud.

[40] Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., and Pedreschi,

D. (2018). A survey of methods for explaining black box models. ACM computing

surveys (CSUR), 51(5):1–42.

[41] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., and Courville, A. C. (2017).

Improved training of wasserstein gans. In Advances in neural information processing

systems, pages 5767–5777.

[42] Haldekar, M., Ganesan, A., and Oates, T. (2017). Identifying spatial relations in

images using convolutional neural networks. In 2017 International Joint Conference

on Neural Networks (IJCNN), pages 3593–3600. IEEE.

Bibliography 67

[43] He, K., Zhang, X., Ren, S., and Sun, J. (2016a). Deep residual learning for image

recognition. In Proceedings of the IEEE conference on computer vision and pattern

recognition, pages 770–778.

[44] He, K., Zhang, X., Ren, S., and Sun, J. (2016b). Identity mappings in deep residual

networks. In European conference on computer vision, pages 630–645. Springer.

[45] Henschke, J. U., Dylda, E., Katsanevaki, D., Dupuy, N., Currie, S. P., Amvrosiadis,

T., Pakan, J. M., and Rochefort, N. L. (2020). Reward association enhances stimulus-

specific representations in primary visual cortex. Current Biology.

[46] Herculano-Houzel, S. (2012). The remarkable, yet not extraordinary, human brain

as a scaled-up primate brain and its associated cost. Proceedings of the National

Academy of Sciences, 109(Supplement 1):10661–10668.

[47] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and Hochreiter, S. (2017).

Gans trained by a two time-scale update rule converge to a local nash equilibrium.

Advances in neural information processing systems, 30.

[48] Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger, K. Q. (2017). Densely

connected convolutional networks. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 4700–4708.

[49] Isola, P., Zhu, J.-Y., Zhou, T., and Efros, A. A. (2017). Image-to-image translation

with conditional adversarial networks. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 1125–1134.

[50] Jabbar, A., Li, X., and Omar, B. (2020). A survey on generative adversarial

networks: Variants, applications, and training. arXiv preprint arXiv:2006.05132.

[51] Jercog, P., Rogerson, T., and Schnitzer, M. J. (2016). Large-scale fluorescence

calcium-imaging methods for studies of long-term memory in behaving mammals.

Cold Spring Harbor perspectives in biology, 8(5):a021824.

[52] Jetley, S., Lord, N. A., Lee, N., and Torr, P. H. (2018). Learn to pay attention.

arXiv preprint arXiv:1804.02391.

[53] Karras, T., Aila, T., Laine, S., and Lehtinen, J. (2017). Progressive growing of

gans for improved quality, stability, and variation. arXiv preprint arXiv:1710.10196.

[54] Khosla, P., Teterwak, P., Wang, C., Sarna, A., Tian, Y., Isola, P., Maschinot, A.,

Bibliography 68

Liu, C., and Krishnan, D. (2020). Supervised contrastive learning. arXiv preprint

arXiv:2004.11362.

[55] Kim, T., Cha, M., Kim, H., Lee, J. K., and Kim, J. (2017). Learning to dis-

cover cross-domain relations with generative adversarial networks. In International

Conference on Machine Learning, pages 1857–1865. PMLR.

[56] Kindermans, P.-J., Hooker, S., Adebayo, J., Alber, M., Schütt, K. T., Dähne,

S., Erhan, D., and Kim, B. (2019). The (un) reliability of saliency methods. In

Explainable AI: Interpreting, Explaining and Visualizing Deep Learning, pages

267–280. Springer.

[57] Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980.

[58] Kodali, N., Abernethy, J., Hays, J., and Kira, Z. (2017). On convergence and

stability of gans. arXiv preprint arXiv:1705.07215.

[59] Kurach, K., Lučić, M., Zhai, X., Michalski, M., and Gelly, S. (2019). A large-scale

study on regularization and normalization in gans. In International Conference on

Machine Learning, pages 3581–3590. PMLR.

[60] LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. nature,

521(7553):436–444.

[61] Ledig, C., Theis, L., Huszár, F., Caballero, J., Cunningham, A., Acosta, A.,

Aitken, A., Tejani, A., Totz, J., Wang, Z., et al. (2017). Photo-realistic single image

super-resolution using a generative adversarial network. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pages 4681–4690.

[62] Li, B. M., Amvrosiadis, T., Rochefort, N., and Onken, A. (2020). Calciumgan: A

generative adversarial network model for synthesising realistic calcium imaging data

of neuronal populations. arXiv preprint arXiv:2009.02707.

[63] Li, Z., Liu, F., Yang, W., Peng, S., and Zhou, J. (2021). A survey of convolutional

neural networks: analysis, applications, and prospects. IEEE Transactions on Neural

Networks and Learning Systems.

[64] Liu, W., Wang, Z., Liu, X., Zeng, N., Liu, Y., and Alsaadi, F. E. (2017). A

survey of deep neural network architectures and their applications. Neurocomputing,

234:11–26.

Bibliography 69

[65] Long, J. L., Zhang, N., and Darrell, T. (2014). Do convnets learn correspondence?

Advances in neural information processing systems, 27:1601–1609.

[66] Lucic, M., Kurach, K., Michalski, M., Gelly, S., and Bousquet, O. (2017). Are

gans created equal? a large-scale study. arXiv preprint arXiv:1711.10337.

[67] Maas, A. L., Hannun, A. Y., Ng, A. Y., et al. (2013). Rectifier nonlinearities

improve neural network acoustic models. In Proc. icml, volume 30, page 3. Citeseer.

[68] Macke, J. H., Berens, P., Ecker, A. S., Tolias, A. S., and Bethge, M. (2009).

Generating spike trains with specified correlation coefficients. Neural computation,

21(2):397–423.

[69] Makino, T., Jastrzebski, S., Oleszkiewicz, W., Chacko, C., Ehrenpreis, R., Sam-

reen, N., Chhor, C., Kim, E., Lee, J., Pysarenko, K., Reig, B., Toth, H., Awal, D.,

Du, L., Kim, A., Park, J., Sodickson, D. K., Heacock, L., Moy, L., Cho, K., and

Geras, K. J. (2020). Differences between human and machine perception in medical

diagnosis.

[70] Mao, X., Li, Q., Xie, H., Lau, R. Y., Wang, Z., and Paul Smolley, S. (2017). Least

squares generative adversarial networks. In Proceedings of the IEEE international

conference on computer vision, pages 2794–2802.

[71] Maziarka, Ł., Pocha, A., Kaczmarczyk, J., Rataj, K., Danel, T., and Warchoł, M.

(2020). Mol-cyclegan: a generative model for molecular optimization. Journal of

Cheminformatics, 12(1):1–18.

[72] Micikevicius, P., Narang, S., Alben, J., Diamos, G., Elsen, E., Garcia, D., Ginsburg,

B., Houston, M., Kuchaiev, O., Venkatesh, G., et al. (2017). Mixed precision training.

arXiv preprint arXiv:1710.03740.

[73] Miotto, R., Wang, F., Wang, S., Jiang, X., and Dudley, J. T. (2018). Deep learning

for healthcare: review, opportunities and challenges. Briefings in bioinformatics,

19(6):1236–1246.

[74] Mirza, M. and Osindero, S. (2014). Conditional generative adversarial nets. arXiv

preprint arXiv:1411.1784.

[75] Molano-Mazon, M., Onken, A., Piasini*, E., and Panzeri*, S. (2018). Synthesizing

realistic neural population activity patterns using generative adversarial networks. In

International Conference on Learning Representations.

Bibliography 70

[76] Müller, R., Kornblith, S., and Hinton, G. (2019). When does label smoothing

help? arXiv preprint arXiv:1906.02629.

[77] Nain, A. K. (2020). Keras documentation: Cyclegan.

[78] Nemati, S., Linderman, S. W., Chen, Z., et al. (2014). A probabilistic modeling

approach for uncovering neural population rotational dynamics. Cosyne, (180106).

[79] Nvidia (2021). Training with mixed precision - nvidia deep learning performance

documentation.

[80] Oktay, O., Schlemper, J., Folgoc, L. L., Lee, M., Heinrich, M., Misawa, K., Mori,

K., McDonagh, S., Hammerla, N. Y., Kainz, B., et al. (2018). Attention u-net:

Learning where to look for the pancreas. arXiv preprint arXiv:1804.03999.

[81] Pakan, J. M., Currie, S. P., Fischer, L., and Rochefort, N. L. (2018). The impact

of visual cues, reward, and motor feedback on the representation of behaviorally

relevant spatial locations in primary visual cortex. Cell reports, 24(10):2521–2528.

[82] Pan, Z., Yu, W., Yi, X., Khan, A., Yuan, F., and Zheng, Y. (2019). Recent progress

on generative adversarial networks (gans): A survey. IEEE Access, 7:36322–36333.

[83] Pandarinath, C., O’Shea, D. J., Collins, J., Jozefowicz, R., Stavisky, S. D., Kao,

J. C., Trautmann, E. M., Kaufman, M. T., Ryu, S. I., Hochberg, L. R., et al. (2018).

Inferring single-trial neural population dynamics using sequential auto-encoders.

Nature methods, page 1.

[84] Park, T., Efros, A. A., Zhang, R., and Zhu, J.-Y. (2020). Contrastive learning for

unpaired image-to-image translation. In European Conference on Computer Vision,

pages 319–345. Springer.

[85] Pasini, M. (2019). 10 lessons i learned training gans for a year.

[86] Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., and Efros, A. A. (2016).

Context encoders: Feature learning by inpainting. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pages 2536–2544.

[87] Pedreira, C., Martinez, J., Ison, M. J., and Quiroga, R. Q. (2012). How many

neurons can we see with current spike sorting algorithms? Journal of neuroscience

methods, 211(1):58–65.

[88] Piccialli, F., Di Somma, V., Giampaolo, F., Cuomo, S., and Fortino, G. (2021). A

Bibliography 71

survey on deep learning in medicine: Why, how and when? Information Fusion,

66:111–137.

[89] Prince, L. Y., Bakhtiari, S., Gillon, C. J., and Richards, B. A. (2020). Calfads:

latent factor analysis of dynamical systems in calcium imaging data.

[90] Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., et al. (2019).

Language models are unsupervised multitask learners. OpenAI blog, 1(8):9.

[91] Rey, H. G., Pedreira, C., and Quiroga, R. Q. (2015). Past, present and future of

spike sorting techniques. Brain research bulletin, 119:106–117.

[92] Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net: Convolutional networks

for biomedical image segmentation. In International Conference on Medical image

computing and computer-assisted intervention, pages 234–241. Springer.

[93] Rossum, M. v. (2001). A novel spike distance. Neural computation, 13(4):751–

763.

[94] Rupprecht, P., Carta, S., Hoffmann, A., Echizen, M., Blot, A., Kwan, A. C.,

Dan, Y., Hofer, S. B., Kitamura, K., Helmchen, F., et al. (2021). A database and

deep learning toolbox for noise-optimized, generalized spike inference from calcium

imaging. Nature Neuroscience, pages 1–14.

[95] Russell, J. T. (2011). Imaging calcium signals in vivo: a powerful tool in physiol-

ogy and pharmacology. British journal of pharmacology, 163(8):1605–1625.

[96] Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., and Chen,

X. (2016). Improved techniques for training gans. Advances in neural information

processing systems, 29:2234–2242.

[97] Schneidman, E., Berry, M. J., Segev, R., and Bialek, W. (2006). Weak pairwise

correlations imply strongly correlated network states in a neural population. Nature,

440(7087):1007–1012.

[98] Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., and Batra,

D. (2017). Grad-cam: Visual explanations from deep networks via gradient-based

localization. In Proceedings of the IEEE international conference on computer

vision, pages 618–626.

[99] She, Q. and Wu, A. (2020). Neural dynamics discovery via gaussian process

Bibliography 72

recurrent neural networks. In Uncertainty in Artificial Intelligence, pages 454–464.

PMLR.

[100] Shlens, J., Field, G. D., Gauthier, J. L., Grivich, M. I., Petrusca, D., Sher, A.,

Litke, A. M., and Chichilnisky, E. (2006). The structure of multi-neuron firing

patterns in primate retina. Journal of Neuroscience, 26(32):8254–8266.

[101] Simonyan, K., Vedaldi, A., and Zisserman, A. (2013). Deep inside convolutional

networks: Visualising image classification models and saliency maps. arXiv preprint

arXiv:1312.6034.

[102] Simonyan, K. and Zisserman, A. (2014). Very deep convolutional networks for

large-scale image recognition. arXiv preprint arXiv:1409.1556.

[103] Smilkov, D., Thorat, N., Kim, B., Viégas, F., and Wattenberg, M. (2017). Smooth-

grad: removing noise by adding noise. arXiv preprint arXiv:1706.03825.

[104] Steinmetz, N. A., Aydin, C., Lebedeva, A., Okun, M., Pachitariu, M., Bauza,

M., Beau, M., Bhagat, J., Böhm, C., Broux, M., et al. (2021). Neuropixels 2.0: A

miniaturized high-density probe for stable, long-term brain recordings. Science,

372(6539).

[105] Stosiek, C., Garaschuk, O., Holthoff, K., and Konnerth, A. (2003). In vivo

two-photon calcium imaging of neuronal networks. Proceedings of the National

Academy of Sciences, 100(12):7319–7324.

[106] Sweetnam, D., Holmes, A., Tennant, K. A., Zamani, A., Walle, M., Jones, P.,

Wong, C., and Brown, C. E. (2012). Diabetes impairs cortical plasticity and functional

recovery following ischemic stroke. Journal of Neuroscience, 32(15):5132–5143.

[107] Tang, A., Jackson, D., Hobbs, J., Chen, W., Smith, J. L., Patel, H., Prieto, A.,

Petrusca, D., Grivich, M. I., Sher, A., et al. (2008). A maximum entropy model

applied to spatial and temporal correlations from cortical networks in vitro. Journal

of Neuroscience, 28(2):505–518.

[108] Theis, L., Berens, P., Froudarakis, E., Reimer, J., Rosón, M. R., Baden, T., Euler,

T., Tolias, A. S., and Bethge, M. (2016). Benchmarking spike rate inference in

population calcium imaging. Neuron, 90(3):471–482.

[109] Tmenova, O., Martin, R., and Duong, L. (2019). Cyclegan for style transfer in

Bibliography 73

x-ray angiography. International journal of computer assisted radiology and surgery,

14(10):1785–1794.

[110] Tompson, J., Goroshin, R., Jain, A., LeCun, Y., and Bregler, C. (2015). Effi-

cient object localization using convolutional networks. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pages 648–656.

[111] Tschannen, M., Bachem, O., and Lucic, M. (2018). Recent advances in

autoencoder-based representation learning. arXiv preprint arXiv:1812.05069.

[112] Ulyanov, D., Vedaldi, A., and Lempitsky, V. (2016). Instance normalization: The

missing ingredient for fast stylization. arXiv preprint arXiv:1607.08022.

[113] Vanwalleghem, G., Constantin, L., and Scott, E. K. (2020). Calcium imaging

and the curse of negativity. Frontiers in neural circuits, 14.

[114] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,

Kaiser, Ł., and Polosukhin, I. (2017). Attention is all you need. In Advances in

neural information processing systems, pages 5998–6008.

[115] Wang, W., Zheng, V. W., Yu, H., and Miao, C. (2019). A survey of zero-shot

learning: Settings, methods, and applications. ACM Transactions on Intelligent

Systems and Technology (TIST), 10(2):1–37.

[116] Wang, Y., Yao, H., and Zhao, S. (2016). Auto-encoder based dimensionality

reduction. Neurocomputing, 184:232–242.

[117] Wang, Y., Yao, Q., Kwok, J. T., and Ni, L. M. (2020). Generalizing from a

few examples: A survey on few-shot learning. ACM Computing Surveys (CSUR),

53(3):1–34.

[118] Wang, Z., She, Q., and Ward, T. E. (2021). Generative adversarial networks

in computer vision: A survey and taxonomy. ACM Computing Surveys (CSUR),

54(2):1–38.

[119] Wei, Z., Lin, B.-J., Chen, T.-W., Daie, K., Svoboda, K., and Druckmann, S.

(2020). A comparison of neuronal population dynamics measured with calcium

imaging and electrophysiology. PLoS computational biology, 16(9):e1008198.

[120] Williams, A. H., Kim, T. H., Wang, F., Vyas, S., Ryu, S. I., Shenoy, K. V.,

Schnitzer, M., Kolda, T. G., and Ganguli, S. (2018a). Unsupervised discovery

Bibliography 74

of demixed, low-dimensional neural dynamics across multiple timescales through

tensor component analysis. Neuron, 98(6):1099–1115.e8.

[121] Williams, A. H., Kim, T. H., Wang, F., Vyas, S., Ryu, S. I., Shenoy, K. V.,

Schnitzer, M., Kolda, T. G., and Ganguli, S. (2018b). Unsupervised discovery

of demixed, low-dimensional neural dynamics across multiple timescales through

tensor component analysis. Neuron, 98(6):1099–1115.

[122] Wu, J., Zhang, C., Xue, T., Freeman, W. T., and Tenenbaum, J. B. (2016).

Learning a probabilistic latent space of object shapes via 3d generative-adversarial

modeling. In Proceedings of the 30th International Conference on Neural Informa-

tion Processing Systems, pages 82–90.

[123] Yang, H., Sun, J., Carass, A., Zhao, C., Lee, J., Xu, Z., and Prince, J. (2018).

Unpaired brain mr-to-ct synthesis using a structure-constrained cyclegan. In Deep

Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision

Support, pages 174–182. Springer.

[124] Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R. R., and Le, Q. V.

(2019). Xlnet: Generalized autoregressive pretraining for language understanding.

Advances in neural information processing systems, 32.

[125] Yi, Z., Zhang, H., Tan, P., and Gong, M. (2017). Dualgan: Unsupervised dual

learning for image-to-image translation. In Proceedings of the IEEE international

conference on computer vision, pages 2849–2857.

[126] Yu, N., Liu, G., Dundar, A., Tao, A., Catanzaro, B., Davis, L., and Fritz,

M. (2021). Dual contrastive loss and attention for gans. arXiv preprint

arXiv:2103.16748.

[127] Zemouri, R., Zerhouni, N., and Racoceanu, D. (2019). Deep learning in the

biomedical applications: Recent and future status. Applied Sciences, 9(8):1526.

[128] Zhang, H., Xu, T., Li, H., Zhang, S., Wang, X., Huang, X., and Metaxas, D. N.

(2017). Stackgan: Text to photo-realistic image synthesis with stacked generative

adversarial networks. In Proceedings of the IEEE international conference on

computer vision, pages 5907–5915.

[129] Zhong, J., Haoran, W., Yunlong, Y., and Yanwei, P. (2019). A decadal survey of

zero-shot image classification. SCIENTIA SINICA Informationis, 49(10):1299–1320.

Bibliography 75

[130] Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., and Torralba, A. (2016). Learning

deep features for discriminative localization. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 2921–2929.

[131] Zhu, J., Yang, G., and Lio, P. (2019). How can we make gan perform better in

single medical image super-resolution? a lesion focused multi-scale approach. In

2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), pages

1669–1673. IEEE.

[132] Zhu, J.-Y., Park, T., Isola, P., and Efros, A. A. (2017). Unpaired image-to-image

translation using cycle-consistent adversarial networks. In Proceedings of the IEEE

international conference on computer vision, pages 2223–2232.

	Introduction
	Structure

	Background
	Neuronal activity recordings
	Animal experiment and data collection

	Modelling neuronal activity
	Generative adversarial networks
	Cycle-consistent adversarial networks
	Explainable deep neural networks
	Features visualization
	Self-attention mechanism

	Methods
	Model pipeline
	Data preprocessing
	Neuron spatial ordering
	Synthetic data
	Evaluation and metrics

	Networks objective and architecture
	Generators
	Discriminators

	Implementation detail

	Results
	Synthetic data
	Recorded data
	Neuron spatial order

	Discussion
	Limitations
	Future Work
	Conclusion

	Appendix
	Synthetic data experiment results
	Recorded data experiment results
	Spike statistic analysis
	Neuron spatial order

	Bibliography

